当前位置: X-MOL 学术J. Environ. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomass-derived composite anode electrode: synthesis, characterizations, and application in microbial fuel cells (MFCs)
Journal of Environmental Chemical Engineering ( IF 7.4 ) Pub Date : 2021-07-27 , DOI: 10.1016/j.jece.2021.106111
Asim Ali Yaqoob 1 , Mohamad Nasir Mohamad Ibrahim 1 , Khalid Umar 1
Affiliation  

Nowadays, the biomass-derived graphene oxide (GO) material as an anode electrode and its modification with metal oxide (TiO2) was considered the most promising for microbial fuel cells (MFCs). Moreover, the biomass-derived GO and modified GO electrodes encountered electrode challenges such as electron transfer rate, biocompatibility, and durability. In the present study, GO and modified GO/TiO2 composite anode were used in MFCs to enhance the electron transportation and bioremediation rate of the Cd2+ from synthetic wastewater. The GO offered 25.43 mA/m2 current density and 0.105 mW/m2 power density with 83% bioremediating efficiency while GO/TiO2 composite significantly showed 5.7 times higher energy output with 87.25% bioremediating efficiency. During the biological characterization, it was found that Klebsiella pneumoniae, Lysinibacillus, and Acinetobacter strains are the most dominant species on the surface of GO and GO/TiO2 composite anodes. Further, several other electrochemical, and biological characterizations are also carried out to support the performance of the presently prepared anodes in MFCs. Additionally, multiple parameters optimization was also considered to analyze the durability and stability of the presently prepared anodes at different environmental conditions.



中文翻译:

生物质衍生的复合阳极电极:合成、表征和在微生物燃料电池 (MFC) 中的应用

如今,生物质衍生的氧化石墨烯(GO)材料作为阳极及其用金属氧化物(TiO 2)改性被认为是微生物燃料电池(MFC)最有前途的材料。此外,生物质衍生的 GO 和改性 GO 电极遇到了电极挑战,如电子转移率、生物相容性和耐久性。在本研究中,GO 和改性 GO/TiO 2复合阳极用于 MFC 以提高合成废水中Cd 2+的电子传输和生物修复率。GO 提供 25.43  mA/m 2电流密度和 0.105  mW/m 2功率密度,生物修复效率为 83%,而 GO/TiO 2复合材料的能量输出显着提高了 5.7 倍,生物修复效率为 87.25%。在生物学表征过程中,发现肺炎克雷伯菌、赖氨酸杆菌不动杆菌是GO和GO/TiO 2复合阳极表面的优势菌种。此外,还进行了其他几种电化学和生物学表征,以支持目前制备的阳极在 MFC 中的性能。此外,还考虑了多参数优化来分析目前制备的阳极在不同环境条件下的耐久性和稳定性。

更新日期:2021-07-27
down
wechat
bug