当前位置: X-MOL 学术Eng. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fragility assessment and optimum design of a steel–concrete frame structure with hybrid energy-dissipated devices under multi-hazards of earthquake and wind
Engineering Structures ( IF 5.6 ) Pub Date : 2021-07-27 , DOI: 10.1016/j.engstruct.2021.112878
Chao Li , Yang Liu , Hong-Nan Li

Engineering structures may inevitably be subjected to earthquakes and winds during their life cycles, furthermore, with the probability of simultaneous occurrence, the hit of combined earthquake and wind shall pose a stiffer threat to the structural functionality and safety. Passive control technique is a practical and effective method to mitigate earthquake and wind hazards for new or existing engineering structures. This paper develops a multi-hazard protective system with the hybrid energy-dissipated devices of buckling-restrained braces (BRBs) and viscous dampers (VDs), and investigates the effectiveness and optimum design parameters of different supplemental devices using the fragility function method. The OpenSees platform is employed to establish the finite element (FE) models of bare steel–concrete moment resisting frame (MRF), buckling-restrained braced frame (BRBF), viscous damped frame (VDF) and hybrid damped frame (HDF) with both BRBs and VDs. In total 120 groups of combined “earthquake-wind” events with a wide range of hazard intensities are developed using the Monte Carlo simulation, which are applied to the dynamic time history analyses of the aforementioned four frame structures. The multi-hazard fragility surfaces, which depict the exceeding probability of structures under simultaneous earthquake and wind loads, can be generated for different damage states. The numerical results indicate that the HDF is an effective structural system against the multiple hazards attacks, and the energy dissipation contributions of BRB and FVD vary with the hazard intensities of earthquake and wind. To further identify the optimum design scheme for the HDF system, the parameters of hybrid passive control devices are extensively investigated by evaluating the hazard intensities required when achieving specified damage states in the fragility surfaces. The findings can provide a practical guide for the design of structure with energy-dissipated devices against the multi-hazard scenarios of earthquake and wind.



中文翻译:

地震和风多灾种下混合消能装置钢-混凝土框架结构易损性评估及优化设计

工程结构在其生命周期中不可避免地会受到地震和风的影响,而且由于有可能同时发生,地震和风的联合冲击将对结构的功能性和安全性构成更大的威胁。被动控制技术是减轻新建或现有工程结构地震和风灾的实用有效方法。本文开发了一种具有屈曲约束支撑(BRBs)和粘性阻尼器(VDs)混合耗能装置的多灾害防护系统,并使用脆性函数方法研究了不同辅助装置的有效性和优化设计参数。OpenSees 平台用于建立裸钢-混凝土抗弯框架 (MRF) 的有限元 (FE) 模型,屈曲约束支撑框架 (BRBF)、粘性阻尼框架 (VDF) 和带有 BRB 和 VD 的混合阻尼框架 (HDF)。使用蒙特卡罗模拟开发了总共 120 组具有广泛危险强度的组合“地震-风”事件,并将其应用于上述四种框架结构的动态时程分析。可以针对不同的损坏状态生成多危害脆性表面,它描述了结构在同时发生的地震和风荷载下的超过概率。数值结果表明,HDF是一种有效抵御多种灾害攻击的结构体系,BRB和FVD的能量耗散贡献随地震和风的灾害强度而变化。为了进一步确定 HDF 系统的最佳设计方案,通过评估在脆性表面达到指定损伤状态时所需的危险强度,对混合被动控制装置的参数进行了广泛研究。研究结果可为具有消能装置的结构设计提供针对地震和风等多灾害场景的实用指南。

更新日期:2021-07-27
down
wechat
bug