当前位置: X-MOL 学术Mon. Not. R. Astron. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The impact of the spin–orbit misalignment and of the spin of B on the Lense–Thirring orbital precessions of the double pulsar PSR J0737–3039A/B
Monthly Notices of the Royal Astronomical Society ( IF 4.7 ) Pub Date : 2021-07-23 , DOI: 10.1093/mnras/stab2152
Lorenzo Iorio 1
Affiliation  

In the double pulsar, the Lense–Thirring periastron precession $\dot{\omega }^\mathrm{LT}$ could be used to measure/constrain the moment of inertia $\mathcal {I}_\mathrm{A}$ of A. Conversely, if $\mathcal {I}_\mathrm{A}$ will be independently determined with sufficient accuracy by other means, tests of the Lense–Thirring effect could be performed. Such findings rely upon a formula for $\dot{\omega }^\mathrm{LT,\, A}$ induced by the spin angular momentum ${\boldsymbol{S}}^\mathrm{A}$ of A, valid if the orbital angular momentum $\boldsymbol{L}$ and ${\boldsymbol{S}}^\mathrm{A}$ are aligned, and neglecting $\dot{\omega }^\mathrm{LT,\, B}$ because of the smallness of ${\boldsymbol{S}}^\mathrm{B}$. The impact on $\dot{\omega }^\mathrm{LT,\, A}$ of the departures of the ${\boldsymbol{S}}^\mathrm{A}$–$\boldsymbol{L}$ geometry from the ideal alignment is calculated. With the current upper bound on the misalignment angle δA between them, the angles $\lambda _\mathrm{A},\ \eta _\mathrm{A}$ of ${\boldsymbol{S}}^\mathrm{A}$ are constrained within $85^\circ \lesssim \lambda _\mathrm{A}\lesssim 92^\circ ,\ 266^\circ \lesssim \eta _\mathrm{A} \lesssim 274^\circ$. In units of the first-order post-Newtonian mass-dependent periastron precession $\dot{\omega }^\mathrm{GR}=16{_{.}^{\circ}}89 \, \mathrm{yr}^{-1}$, a range variation $\Delta \dot{\omega }^\mathrm{LT,\, A}\doteq \dot{\omega }^\mathrm{LT,\, A}_\mathrm{max} - \dot{\omega }^\mathrm{LT,\, A}_\mathrm{min} = 8\times 10^{-8}\, \omega ^\mathrm{GR}$ is implied. The experimental uncertainty $\sigma _{\dot{\omega }_\mathrm{obs}}$ in measuring the periastron rate should become smaller by 2028–2030. Then, the spatial orientation of ${\boldsymbol{S}}^\mathrm{B}$ is constrained from the existing bounds on the misalignment angle δB, and $\dot{\omega }^\mathrm{LT,\, B}\simeq 2\times 10^{-7}\, \dot{\omega }^\mathrm{GR}$ is correspondingly calculated. The error $\sigma _{\dot{\omega }_\mathrm{obs}}$ should become smaller around 2025. The Lense–Thirring inclination and node precessions $\dot{I}^\mathrm{LT},\ \dot{\Omega }^\mathrm{LT}$ are predicted to be ${\lesssim} 0.05\, \mathrm{arcsec\, yr^{-1}}$, far below the current experimental accuracies $\sigma _{I_\mathrm{obs}}=0{_{.}^{\circ}}5 , \ \sigma _{\Omega _\mathrm{obs}}=2^\circ$ in measuring $I,\ \Omega$ over 1.5 yr with the scintillation technique. The Lense–Thirring rate $\dot{x}_\mathrm{A}^\mathrm{LT}$ of the projected semimajor axis xA of PSR J0737−3039A is ${\lesssim} 2\times 10^{-16}\, \mathrm{s\, s}^{-1}$, just two orders of magnitude smaller than a putative experimental uncertainty $\sigma _{\dot{x}^\mathrm{obs}_\mathrm{A}}\simeq 10^{-14}\, \mathrm{s\, s}^{-1}$ guessed from 2006 data.

中文翻译:

自旋轨道错位和 B 自旋对双脉冲星 PSR J0737-3039A/B Lense-Thirring 轨道进动的影响

在双脉冲星中,Lense-Thirring 近星点进动 $\dot{\omega }^\mathrm{LT}$ 可用于测量/约束转动惯量 $\mathcal {I}_\mathrm{A}$ A. 相反,如果 $\mathcal {I}_\mathrm{A}$ 将通过其他方式以足够准确的方式独立确定,则可以执行 Lense-Thirring 效应的测试。这些发现依赖于 A 的自旋角动量 ${\boldsymbol{S}}^\mathrm{A}$ 引起的 $\dot{\omega }^\mathrm{LT,\, A}$ 的公式,有效如果轨道角动量 $\boldsymbol{L}$ 和 ${\boldsymbol{S}}^\mathrm{A}$ 对齐,并且忽略 $\dot{\omega }^\mathrm{LT,\, B} $ 因为 ${\boldsymbol{S}}^\mathrm{B}$ 很小。对 $\dot{\omega }^\mathrm{LT,\, 的影响 计算 ${\boldsymbol{S}}^\mathrm{A}$–$\boldsymbol{L}$ 几何图形偏离理想对齐的 A}$。使用它们之间的错位角 δA 的当前上限,${\boldsymbol{S}}^\mathrm{A} 的角度 $\lambda _\mathrm{A},\ \eta _\mathrm{A}$ $ 被限制在 $85^\circ \lesssim \lambda _\mathrm{A}\lesssim 92^\circ ,\ 266^\circ \lesssim \eta _\mathrm{A} \lesssim 274^\circ$ 内。以一阶后牛顿质量依赖的近星体进动为单位 $\dot{\omega }^\mathrm{GR}=16{_{.}^{\circ}}89 \, \mathrm{yr}^ {-1}$,范围变化 $\Delta \dot{\omega }^\mathrm{LT,\, A}\doteq \dot{\omega }^\mathrm{LT,\, A}_\mathrm{ max} - \dot{\omega }^\mathrm{LT,\, A}_\mathrm{min} = 8\times 10^{-8}\, \omega ^\mathrm{GR}$ 是隐含的。到 2028-2030 年,测量近星体速率的实验不确定性 $\sigma _{\dot{\omega }_\mathrm{obs}}$ 应该会变小。然后,${\boldsymbol{S}}^\mathrm{B}$ 的空间方向受到错位角 δB 的现有界限的约束,$\dot{\omega }^\mathrm{LT,\, B }\simeq 2\times 10^{-7}\, \dot{\omega }^\mathrm{GR}$ 相应计算。误差 $\sigma _{\dot{\omega }_\mathrm{obs}}$ 应该在 2025 年左右变得更小。Lense–Thirring 倾角和节点进动 $\dot{I}^\mathrm{LT},\ \ dot{\Omega }^\mathrm{LT}$ 预计为 ${\lesssim} 0.05\, \mathrm{arcsec\, yr^{-1}}$,远低于当前的实验精度 $\sigma _{ I_\mathrm{obs}}=0{_{.}^{\circ}}5 , \ \sigma _{\Omega _\mathrm{obs}}=2^\circ$ 在测量 $I,\ \Omega使用闪烁技术超过 1.5 年。
更新日期:2021-07-23
down
wechat
bug