当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extra Sodiation Sites in Hard Carbon for High Performance Sodium Ion Batteries
Small Methods ( IF 10.7 ) Pub Date : 2021-07-26 , DOI: 10.1002/smtd.202100580
Qingmeng Gan 1, 2 , Ning Qin 1, 3 , Shuai Gu 1, 3 , Zhenyu Wang 1 , Zhiqiang Li 1 , Kemeng Liao 1 , Kaili Zhang 3 , Li Lu 2 , Zhenghe Xu 1 , Zhouguang Lu 1
Affiliation  

Hard carbons are promising anodes for sodium-ion batteries (SIBs). However, the low practical capacity from limited sodiation sites impedes their applications. Herein, ultrahigh concentration of pyridine N (≈7.9%) is introduced inside hard carbon, considering that pyridine N may provide extra sodium storage sites with stable CN• and CC• radicals during cycling. To expose more radical sites for sodium storage, a 3D structure with a multistage pore structure is constructed through NH3 release during the pyrolyzation process. As expected, the hard carbon with extra sodiation sites exhibits an impressively high capacity of 434 mA h g−1 at 20 mA g−1, superior rate performance of 238 mA h g−1 at a current density of 5 A g−1 and a high-capacity retention of 98.7% after 5000 cycles. The radicals induced Na-adsorption mechanism was further explored through ex situ electron paramagnetic resonance technology, in situ Raman technology and density functional theory calculations. The results reveal that the extra sodiation sites come from the electrostatic interaction at low potentials. This work constructs a sodium ions storage model of extra radicals and provides an extended strategy to improve the electrochemical performance of SIBs anode materials.

中文翻译:

用于高性能钠离子电池的硬碳中的额外钠化位点

硬碳是钠离子电池(SIB)的有前途的阳极。然而,有限的钠化位点的低实际容量阻碍了它们的应用。在此,考虑到吡啶 N 可以提供额外的钠存储位点,在循环过程中具有稳定的 C N• 和 C C• 自由基,因此在硬碳中引入了超高浓度的吡啶 N(≈7.9%)。为了暴露更多的钠存储自由基位点,通过在热解过程中释放NH 3构建了具有多级孔结构的 3D 结构。正如预期的那样,具有额外钠化位点的硬碳在 20 mA g -1 时表现出令人印象深刻的 434 mA hg -1 的高容量,以及 238 mA hg -1 的优异倍率性能在 5 A g -1的电流密度和 5000 次循环后的高容量保持率为 98.7%。通过异位电子顺磁共振技术、原位拉曼技术和密度泛函理论计算进一步探索了自由基诱导Na吸附机制。结果表明,额外的钠化位点来自低电位下的静电相互作用。这项工作构建了额外自由基的钠离子存储模型,并提供了一种扩展策略来提高 SIBs 负极材料的电化学性能。
更新日期:2021-09-14
down
wechat
bug