当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2021-07-26 , DOI: 10.1038/s41565-021-00951-y
Jian Gu 1 , Minzhen Jian 1 , Li Huang 2 , Zhihu Sun 2 , Aowen Li 3 , Yang Pan 2 , Jiuzhong Yang 2 , Wu Wen 2 , Wu Zhou 3, 4 , Yue Lin 1 , Hui-Juan Wang 5 , Xinyu Liu 1 , Leilei Wang 1 , Xianxian Shi 1 , Xiaohui Huang 1 , Lina Cao 1 , Si Chen 1 , Xusheng Zheng 2 , Haibin Pan 2 , Junfa Zhu 2 , Shiqiang Wei 2 , Wei-Xue Li 1, 6 , Junling Lu 1, 6
Affiliation  

Atomically dispersed metal catalysts maximize atom efficiency and display unique catalytic properties compared with regular metal nanoparticles. However, achieving high reactivity while preserving high stability at appreciable loadings remains challenging. Here we solve the challenge by synergizing metal–support interactions and spatial confinement, which enables the fabrication of highly loaded atomic nickel (3.1 wt%) along with dense atomic copper grippers (8.1 wt%) on a graphitic carbon nitride support. For the semi-hydrogenation of acetylene in excess ethylene, the fabricated catalyst shows extraordinary catalytic performance in terms of activity, selectivity and stability—far superior to supported atomic nickel alone in the absence of a synergizing effect. Comprehensive characterization and theoretical calculations reveal that the active nickel site confined in two stable hydroxylated copper grippers dynamically changes by breaking the interfacial nickel–support bonds on reactant adsorption and making these bonds on product desorption. Such a dynamic effect confers high catalytic performance, providing an avenue to rationally design efficient, stable and highly loaded, yet atomically dispersed, catalysts.



中文翻译:

协同金属-载体相互作用和空间限制促进原子镍加氢的动力学

与常规金属纳米颗粒相比,原子分散的金属催化剂可最大限度地提高原子效率并显示出独特的催化性能。然而,在可观的负载下保持高稳定性的同时实现高反应性仍然具有挑战性。在这里,我们通过协同金属-载体相互作用和空间限制来解决挑战,这使得能够在石墨氮化碳载体上制造高负载原子镍 (3.1 wt%) 和致密原子铜夹持器 (8.1 wt%)。对于乙炔在过量乙烯中的半加氢反应,所制备的催化剂在活性、选择性和稳定性方面表现出非凡的催化性能——在没有协同作用的情况下远优于单独负载的原子镍。综合表征和理论计算表明,通过在反应物吸附时破坏界面镍-支撑键并在产物解吸时形成这些键,限制在两个稳定的羟基化铜夹持器中的活性镍位点动态变化。这种动态效应赋予了高催化性能,为合理设计高效、稳定和高负载但原子分散的催化剂提供了途径。

更新日期:2021-07-26
down
wechat
bug