当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals [Neuroscience]
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2021-07-27 , DOI: 10.1073/pnas.2025775118
Jokubas Ausra 1 , Mingzheng Wu 2, 3 , Xin Zhang 2, 3 , Abraham Vázquez-Guardado 4 , Patrick Skelton 2, 3 , Roberto Peralta 5 , Raudel Avila 6 , Thomas Murickan 1 , Chad R Haney 7 , Yonggang Huang 6 , John A Rogers 6, 8, 9, 10, 11 , Yevgenia Kozorovitskiy 12 , Philipp Gutruf 13, 14, 15, 16
Affiliation  

Wireless, battery-free, and fully subdermally implantable optogenetic tools are poised to transform neurobiological research in freely moving animals. Current-generation wireless devices are sufficiently small, thin, and light for subdermal implantation, offering some advantages over tethered methods for naturalistic behavior. Yet current devices using wireless power delivery require invasive stimulus delivery, penetrating the skull and disrupting the blood–brain barrier. This can cause tissue displacement, neuronal damage, and scarring. Power delivery constraints also sharply curtail operational arena size. Here, we implement highly miniaturized, capacitive power storage on the platform of wireless subdermal implants. With approaches to digitally manage power delivery to optoelectronic components, we enable two classes of applications: transcranial optogenetic activation millimeters into the brain (validated using motor cortex stimulation to induce turning behaviors) and wireless optogenetics in arenas of more than 1 m2 in size. This methodology allows for previously impossible behavioral experiments leveraging the modern optogenetic toolkit.



中文翻译:

用于自由移动动物的经颅和远程光遗传学的无线、无电池、皮下植入平台 [神经科学]

无线、无电池和完全可植入皮下的光遗传学工具有望改变自由移动动物的神经生物学研究。当前一代的无线设备足够小、薄和轻,可以用于皮下植入,与用于自然行为的束缚方法相比具有一些优势。然而,目前使用无线电力传输的设备需要侵入性刺激传输,穿透颅骨并破坏血脑屏障。这会导致组织移位、神经元损伤和疤痕。电力输送限制也大大缩减了运营场地的规模。在这里,我们在无线皮下植入物平台上实现了高度小型化的电容式储能。通过数字化管理向光电元件供电的方法,我们实现了两类应用:2大小。这种方法允许利用现代光遗传学工具包进行以前不可能的行为实验。

更新日期:2021-07-24
down
wechat
bug