当前位置: X-MOL 学术Eng. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sub-structure-based ‘three-tiered’ finite element approach to soil-masonry-wall interaction for light seismic motion
Engineering Structures ( IF 5.5 ) Pub Date : 2021-07-24 , DOI: 10.1016/j.engstruct.2021.112847
Michele Longo , Marianthi Sousamli , Paul A. Korswagen , Piet van Staalduinen , Jan G. Rots

Recent, light earthquakes induced by the extraction of gas in the north of the Netherlands have been linked to light, mostly aesthetic damage of the traditional masonry structures in the region; this is also connected to economic losses and societal unrest. To be able to accurately assess the light damage, detailed finite element models are necessary and need to include realistic soil movement, wave propagation, and soil-structure interaction boundaries. Moreover, the minute deformation of the soil, including the rocking and translational components of seismic ground motion, has shown to be influential to light damage. Consequently, this study has pursued the definition of efficient soil-structure interaction boundaries to implement in finite element models of buildings.

A methodology, following the sub-structure method for the seismic Soil-Structure-Interaction (SSI) is defined and presented. The soil-structure-system is divided into three sub-systems: the far-field soil, the near-field soil and the superstructure. First, a 3 km deep and 8 km wide, plane-strain model of the soil is employed to study the behaviour of the soil at the surface due to deep, simplified seismic events. The soil model is linear-elastic since only light seismic excitations are considered. Next, a smaller, 30 × 300 m (shallow) soil model with a building on top, is given boundary elements calibrated to replicate the behaviour observed at the surface in the larger model. Finally, 2D models of masonry façades set on the intermediate soil model are used to reduce the soil-structure interaction to representative interface elements. The models are matched in terms of dynamic behaviour, strains, cracking, and displacements, and the behaviour is compared to existing ground motion data for the Zeerijp and Westerwijtwerd earthquakes. It is demonstrated that the equivalent interface allows efficient modelling of seismic excitations considering a detailed soil-structure interaction for complex, smeared non-linear, time-history analyses of wall models to assess (light) damage in probabilistic studies. Models with this equivalent interface show greater damage than comparison models without it.



中文翻译:

基于子结构的“三层”有限元方法处理轻地震运动的土-砌体-墙相互作用

最近,荷兰北部因开采天然气而引发的轻微地震与该地区传统砖石结构的轻微破坏有关,主要是美学破坏;这也与经济损失和社会动荡有关。为了能够准确地评估光损伤,详细的有限元模型是必要的,并且需要包括真实的土壤运动、波浪传播和土壤-结构相互作用边界。此外,土壤的微小变形,包括地震地面运动的摇摆和平移分量,已表明对轻损伤有影响。因此,本研究致力于定义有效的土 - 结构相互作用边界,以在建筑物的有限元模型中实施。

定义并提出了一种方法,遵循地震土-结构-相互作用(SSI)的子结构方法。土壤结构系统分为三个子系统:远场土壤、近场土壤和上层建筑。首先,采用 3 公里深和 8 公里宽的土壤平面应变模型来研究由于深层简化地震事件导致的地表土壤行为。土壤模型是线弹性的,因为只考虑了轻微的地震激发。接下来,一个较小的 30 × 300 m(浅层)土壤模型在顶部有建筑物,被赋予边界元素校准以复制在较大模型中在表面观察到的行为。最后,在中间土壤模型上设置的砌体立面二维模型用于将土壤-结构相互作用减少到具有代表性的界面元素。这些模型在动态行为、应变、开裂和位移方面匹配,并将行为与 Zeerijp 和 Westerwijtwerd 地震的现有地面运动数据进行比较。证明等效接口允许有效地模拟地震激发,考虑详细的土壤-结构相互作用,用于墙模型的复杂、模糊非线性、时程分析,以评估概率研究中的(轻)损坏。具有这种等效接口的模型比没有它的比较模型显示出更大的损坏。证明等效接口允许有效地模拟地震激发,考虑详细的土壤-结构相互作用,用于墙模型的复杂、模糊非线性、时程分析,以评估概率研究中的(轻)损坏。具有这种等效接口的模型比没有它的比较模型显示出更大的损坏。证明等效接口允许有效地模拟地震激发,考虑详细的土壤-结构相互作用,用于墙模型的复杂、模糊非线性、时程分析,以评估概率研究中的(轻)损坏。具有这种等效接口的模型比没有它的比较模型显示出更大的损坏。

更新日期:2021-07-24
down
wechat
bug