当前位置: X-MOL 学术Eng. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring the effects of temperature on intrinsic permeability and void ratio alteration through temperature-controlled experiments
Engineering Geology ( IF 6.9 ) Pub Date : 2021-07-24 , DOI: 10.1016/j.enggeo.2021.106299
Mohammad Joshaghani , Omid Ghasemi-Fare

An increase in temperature changes the groundwater density and viscosity, therefore, it is expected that the soil hydraulic conductivity varies with temperature. Beyond this point, thermal loading induces volumetric changes for both sand and clay and may alter soil fabric. These variations might increase or decrease the intrinsic permeability of the soil. A modified temperature-controlled triaxial permeameter cell was used in this study to elevate soil temperature from 20 °C to 80 °C. Moreover, the setup was designed to control the temperature and pressure of the permeant water injected into the specimen. The hydraulic conductivity of both Ottawa sand and Kaolin clay under different confinement stresses (69 kPa to 690 kPa) was measured. Then, intrinsic permeability was calculated considering water properties variation with temperature. The results determined that, although hydraulic conductivity increases with temperature for both Ottawa sand and Kaolin clay, the intrinsic permeability of Ottawa sand reduces by 50%, while in Kaolin clay it slightly reduces when the temperature rises from 20 °C to 80 °C. Nonetheless, analyzing volumetric changes and void ratio variations for both selected soil types show a reduction in void ratio with temperature. Reduction in the void ratio can explain the lower intrinsic permeability in Ottawa sand at the elevated temperature, however in Kaolin clay despite the higher void ratio reduction, another mechanism which is the degeneration of a part of the immobile water within the structure into the mobile water plays an important role.



中文翻译:

通过温控实验探索温度对固有渗透率和空隙率变化的影响

温度升高会改变地下水密度和粘度,因此,预计土壤导水率随温度变化。超过这一点,热负荷会引起沙子和粘土的体积变化,并可能改变土壤结构。这些变化可能会增加或减少土壤的固有渗透性。本研究使用改进的温控三轴渗透仪将土壤温度从 20 °C 提高到 80 °C。此外,该装置旨在控制注入样品的渗透水的温度和压力。测量了渥太华沙子和高岭土在不同限制应力(69 kPa 至 690 kPa)下的水力传导率。然后,考虑水的性质随温度的变化,计算固有渗透率。结果表明,虽然渥太华砂和高岭土的导水率都随着温度的升高而增加,但渥太华砂的固有渗透率降低了 50%,而在高岭土中,当温度从 20°C 升高到 80°C 时,它略有降低。尽管如此,分析两种选定土壤类型的体积变化和空隙率变化表明,空隙率随温度降低。孔隙率的降低可以解释高温下渥太华砂的固有渗透率较低,但在高岭土中,尽管孔隙率降低较高,但另一种机制是结构内部分固定水退化为流动水起着重要的作用。渥太华砂的固有渗透率降低 50%,而在高岭土中,当温度从 20°C 升高到 80°C 时,它略有降低。尽管如此,分析两种选定土壤类型的体积变化和空隙率变化表明,空隙率随温度降低。孔隙率的降低可以解释高温下渥太华砂的固有渗透率较低,但在高岭土中,尽管孔隙率降低较高,但另一种机制是结构内部分固定水退化为流动水起着重要的作用。渥太华砂的固有渗透率降低 50%,而在高岭土中,当温度从 20°C 升高到 80°C 时,它略有降低。尽管如此,分析两种选定土壤类型的体积变化和空隙率变化表明,空隙率随温度降低。孔隙率的降低可以解释高温下渥太华砂的固有渗透率较低,但在高岭土中,尽管孔隙率降低较高,但另一种机制是结构内部分固定水退化为流动水起着重要的作用。分析两种选定土壤类型的体积变化和空隙率变化表明空隙率随温度降低。孔隙率的降低可以解释高温下渥太华砂的固有渗透率较低,但在高岭土中,尽管孔隙率降低较高,但另一种机制是结构内部分固定水退化为流动水起着重要的作用。分析两种选定土壤类型的体积变化和空隙率变化表明空隙率随温度降低。孔隙率的降低可以解释高温下渥太华砂的固有渗透率较低,但在高岭土中,尽管孔隙率降低较高,但另一种机制是结构内部分固定水退化为流动水起着重要的作用。

更新日期:2021-07-30
down
wechat
bug