当前位置: X-MOL 学术Flow Turbulence Combust. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Need for Turbulence Chemistry Interaction Modelling in Highly Resolved Large-Eddy Simulations of Mild Combustion
Flow, Turbulence and Combustion ( IF 2.0 ) Pub Date : 2021-07-24 , DOI: 10.1007/s10494-021-00282-x
Marie Cordier 1 , Paul Lybaert 1 , Ward De Paepe 1 , Laurent Bricteux 1 , Pierre Bénard 2
Affiliation  

The Moderate or Intense Low-oxygen Dilution (MILD) combustion is a promising technique to reduce pollutant emissions of combustion processes, especially nitrogen oxides. This combustion mode involves Turbulence-Chemistry Interaction (TCI), which constitutes a challenge in terms of numerical simulation since it must be properly captured. Up to now, the TCI has been modelled and the corresponding models generally involve coefficients, leading to epistemic uncertainties and, therefore, to different numerical results depending on the used model. The study presented in this paper aims to assess the relevance of performing Large Eddy Simulation of a typical Jet-in-Hot-Coflow flame, simulating diluted combustion, assuming that the TCI is directly resolved, given the grid and the chemical kinetics resolutions. Avoiding TCI modelling allows for lower numerical uncertainties. However, simulations without TCI modelling will normally fail for other types of flames and for higher Reynolds-numbers, so that such simulations can normally only be conducted using TCI modelling. Here, the simulations are performed using Finite Rate Chemistry without TCI model on the Adelaide Jet-in-Hot-Coflow flame. First, the proposed methodology was experimentally validated, highlighting that the obtained reacting results are consistent in terms of temperature and mass fractions with the measurements. Additionally, the results obtained with the “TCI-resolved” assumption are compared to the results obtained using a classical TCI model, the Partially Stirred Reactor model. Moreover, the validity of the approach, consisting in directly resolving the TCI, is assessed based on an analysis of the local Damköhler number A large part of the mesh cells presents a very low Damköhler number, confirming that TCI modelling is not required for the burner under consideration.



中文翻译:

在温和燃烧的高分辨率大涡模拟中需要湍流化学相互作用建模

中度或强低氧稀释 (MILD) 燃烧是一种很有前景的技术,可以减少燃烧过程中的污染物排放,尤其是氮氧化物。这种燃烧模式涉及湍流-化学相互作用 (TCI),这在数值模拟方面构成了挑战,因为它必须被正确捕获。到目前为止,TCI 已经被建模,并且相应的模型通常涉及系数,导致认知不确定性,因此根据所使用的模型导致不同的数值结果。本文中提出的研究旨在评估对典型的 Jet-in-Hot-Coflow 火焰进行大涡模拟、模拟稀释燃烧的相关性,假设 TCI 被直接解析,给定网格和化学动力学分辨率。避免 TCI 建模可以降低数值不确定性。然而,对于其他类型的火焰和更高的雷诺数,没有 TCI 建模的模拟通常会失败,因此这种模拟通常只能使用 TCI 建模进行。在这里,模拟是在 Adelaide Jet-in-Hot-Coflow 火焰上使用有限速率化学进行的,没有 TCI 模型。首先,所提出的方法经过实验验证,强调获得的反应结果在温度和质量分数方面与测量结果一致。此外,将使用“TCI 解析”假设获得的结果与使用经典 TCI 模型(部分搅拌反应器模型)获得的结果进行比较。此外,该方法的有效性,包括直接解决 TCI,

更新日期:2021-07-24
down
wechat
bug