当前位置: X-MOL 学术Minerals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of Lateral Confinement, Roller Aspect Ratio and Wear Condition on HPGR Performance Using DEM-MBD-PRM Simulations
Minerals ( IF 2.2 ) Pub Date : 2021-07-23 , DOI: 10.3390/min11080801
Victor Alfonso Rodriguez , Gabriel K. P. Barrios , Gilvandro Bueno , Luís Marcelo Tavares

It has been known that the performance of high-pressure grinding rolls (HPGR) varies as a function of the method used to laterally confine the rolls, their diameter/length (aspect) ratio as well as their condition, if new or worn. However, quantifying these effects through direct experimentation in machines with reasonably large dimensions is not straightforward, given the challenge, among others, of guaranteeing that the feed material remains unchanged. The present work couples the discrete element method (DEM) to multibody dynamics (MBD) and a novel particle replacement model (PRM) to simulate the performance of a pilot-scale HPGR grinding pellet feed. It shows that rotating side plates, in particular when fitted with studs, will result in more uniform forces along the bed, which also translates in a more constant product size along the rolls as well as higher throughput. It also shows that the edge effect is not affected by roll length, leading to substantially larger proportional edge regions for high-aspect ratio rolls. On the other hand, the product from the center region of such rolls was found to be finer when pressed at identical specific forces. Finally, rolls were found to have higher throughput, but generate a coarser product when worn following the commonly observed trapezoidal profile. The approach often used in industry to compensate for roller wear is to increase the specific force and roll speed. It has been demonstrated to be effective in maintaining product fineness and throughput, as long as the minimum safety gap is not reached.

中文翻译:

使用 DEM-MBD-PRM 模拟研究 HPGR 性能的侧向约束、滚子纵横比和磨损状况

众所周知,高压研磨辊 (HPGR) 的性能会随着用于横向限制辊的方法、它们的直径/长度(纵横)比以及它们的状况(如果是新的或磨损的)而变化。然而,考虑到确保进料保持不变等挑战,通过在具有相当大尺寸的机器上进行直接实验来量化这些影响并不简单。目前的工作将离散元法 (DEM) 与多体动力学 (MBD) 和新型粒子置换模型 (PRM) 结合起来,以模拟中试规模 HPGR 研磨颗粒饲料的性能。它表明旋转侧板,特别是当装有双头螺栓时,将导致沿床面的力更均匀,这也意味着沿辊的产品尺寸更加恒定,以及更高的产量。它还表明边缘效应不受卷长的影响,导致高纵横比卷的比例边缘区域显着更大。另一方面,当以相同的比力加压时,发现来自此类辊中心区域的产品更精细。最后,发现轧辊具有更高的吞吐量,但当按照通常观察到的梯形轮廓磨损时会产生更粗糙的产品。工业上经常使用的补偿辊磨损的方法是增加比力和辊速。只要不达到最小安全间隙,它就可以有效地保持产品细度和产量。它还表明边缘效应不受卷长的影响,导致高纵横比卷的比例边缘区域显着更大。另一方面,当以相同的比力加压时,发现来自此类辊中心区域的产品更精细。最后,发现轧辊具有更高的吞吐量,但当按照通常观察到的梯形轮廓磨损时会产生更粗糙的产品。工业上经常使用的补偿辊磨损的方法是增加比力和辊速。只要不达到最小安全间隙,它就可以有效地保持产品细度和产量。它还表明边缘效应不受卷长的影响,导致高纵横比卷的比例边缘区域显着更大。另一方面,当以相同的比力加压时,发现来自此类辊中心区域的产品更精细。最后,发现轧辊具有更高的吞吐量,但当按照通常观察到的梯形轮廓磨损时会产生更粗糙的产品。工业上经常使用的补偿辊磨损的方法是增加比力和辊速。只要不达到最小安全间隙,它就可以有效地保持产品细度和产量。当以相同的特定力压制时,发现来自此类辊中心区域的产品更精细。最后,发现轧辊具有更高的吞吐量,但当按照通常观察到的梯形轮廓磨损时会产生更粗糙的产品。工业上经常使用的补偿辊磨损的方法是增加比力和辊速。只要不达到最小安全间隙,它就可以有效地保持产品细度和产量。当以相同的特定力压制时,发现来自此类辊中心区域的产品更精细。最后,发现轧辊具有更高的吞吐量,但当按照通常观察到的梯形轮廓磨损时会产生更粗糙的产品。工业上经常使用的补偿辊磨损的方法是增加比力和辊速。只要不达到最小安全间隙,它就可以有效地保持产品细度和产量。
更新日期:2021-07-23
down
wechat
bug