当前位置: X-MOL 学术IEEE Robot. Automation Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous Control of Terrain Adaptation and Wheel Speed Allocation for a Planetary Rover With an Active Suspension System
IEEE Robotics and Automation Letters ( IF 4.6 ) Pub Date : 2021-07-20 , DOI: 10.1109/lra.2021.3091701
Jie Li , Jun He , Yan Xing , Feng Gao

Active suspensions are important features of many recent planetary rovers. For such a rover, the control strategy is crucial to its performance. This letter presents the control method for a planetary rover equipped with an active suspension system. The control algorithm is based on the estimation of terrain geometry and a mapping relation among the motions of rover body, suspension, and wheels. It realizes a simultaneous control of terrain adaptation and wheel speed allocation. The algorithm allows the posture and height of the rover body to be controlled and the slippage of driving wheels to be reduced while the rover traverse uneven, unstructured terrain. Another advantage of the proposed method is that the control system operates only based on proprioceptive sensors with improved efficiency and moderate memory allocation. The proposed control algorithm is applied to a rover prototype. The experiments conducted in a testing field of rovers validate the proposed algorithm and system.

中文翻译:


具有主动悬架系统的行星漫游车的地形适应和轮速分配的同步控制



主动悬架是许多近期行星漫游车的重要特征。对于这样的流动站,控制策略对其性能至关重要。这封信介绍了配备主动悬架系统的行星漫游车的控制方法。控制算法基于地形几何形状的估计以及流动车车身、悬架和车轮运动之间的映射关系。它实现了地形适应和轮速分配的同步控制。当漫游车穿越不平坦、非结构化地形时,该算法可以控制漫游车主体的姿态和高度,并减少驱动轮的打滑。该方法的另一个优点是控制系统仅基于本体感受传感器运行,具有更高的效率和适度的内存分配。所提出的控制算法应用于流动站原型。在流动站测试场进行的实验验证了所提出的算法和系统。
更新日期:2021-07-20
down
wechat
bug