当前位置: X-MOL 学术 › Axioms › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Popularity Prediction of Online Contents via Cascade Graph and Temporal Information
Axioms Pub Date : 2021-07-23 , DOI: 10.3390/axioms10030159
Yingdan Shang , Bin Zhou , Ye Wang , Aiping Li , Kai Chen , Yichen Song , Changjian Lin

Predicting the popularity of online content is an important task for content recommendation, social influence prediction and so on. Recent deep learning models generally utilize graph neural networks to model the complex relationship between information cascade graph and future popularity, and have shown better prediction results compared with traditional methods. However, existing models adopt simple graph pooling strategies, e.g., summation or average, which prone to generate inefficient cascade graph representation and lead to unsatisfactory prediction results. Meanwhile, they often overlook the temporal information in the diffusion process which has been proved to be a salient predictor for popularity prediction. To focus attention on the important users and exclude noises caused by other less relevant users when generating cascade graph representation, we learn the importance coefficient of users and adopt sample mechanism in graph pooling process. In order to capture the temporal features in the diffusion process, we incorporate the inter-infection duration time information into our model by using LSTM neural network. The results show that temporal information rather than cascade graph information is a better predictor for popularity. The experimental results on real datasets show that our model significantly improves the prediction accuracy compared with other state-of-the-art methods.

中文翻译:

基于级联图和时间信息的在线内容流行度预测

预测在线内容的流行度是内容推荐、社会影响预测等的重要任务。最近的深度学习模型普遍利用图神经网络对信息级联图与未来流行度之间的复杂关系进行建模,并且与传统方法相比显示出更好的预测结果。然而,现有模型采用简单的图池化策略,例如求和或平均,这容易产生低效的级联图表示并导致不令人满意的预测结果。同时,他们经常忽视传播过程中的时间信息,这已被证明是流行度预测的显着预测因素。为了在生成级联图表示时将注意力集中在重要用户上并排除其他不太相关的用户造成的噪音,我们学习了用户的重要性系数,并在图池化过程中采用了样本机制。为了捕捉扩散过程中的时间特征,我们使用 LSTM 神经网络将相互感染的持续时间信息合并到我们的模型中。结果表明,时间信息而不是级联图信息是更好的流行度预测指标。在真实数据集上的实验结果表明,与其他最先进的方法相比,我们的模型显着提高了预测精度。为了捕捉扩散过程中的时间特征,我们使用 LSTM 神经网络将相互感染的持续时间信息合并到我们的模型中。结果表明,时间信息而不是级联图信息是更好的流行度预测指标。在真实数据集上的实验结果表明,与其他最先进的方法相比,我们的模型显着提高了预测精度。为了捕捉扩散过程中的时间特征,我们使用 LSTM 神经网络将相互感染的持续时间信息合并到我们的模型中。结果表明,时间信息而不是级联图信息是更好的流行度预测指标。在真实数据集上的实验结果表明,与其他最先进的方法相比,我们的模型显着提高了预测精度。
更新日期:2021-07-23
down
wechat
bug