当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Single-Copy Entanglement Distillation
Physical Review Letters ( IF 8.1 ) Pub Date : 2021-07-23 , DOI: 10.1103/physrevlett.127.040506
Sebastian Ecker 1, 2 , Philipp Sohr 1, 2 , Lukas Bulla 1, 2 , Marcus Huber 1, 3 , Martin Bohmann 1, 2 , Rupert Ursin 1, 2
Affiliation  

The phenomenon of entanglement marks one of the furthest departures from classical physics and is indispensable for quantum information processing. Despite its fundamental importance, the distribution of entanglement over long distances through photons is unfortunately hindered by unavoidable decoherence effects. Entanglement distillation is a means of restoring the quality of such diluted entanglement by concentrating it into a pair of qubits. Conventionally, this would be done by distributing multiple photon pairs and distilling the entanglement into a single pair. Here, we turn around this paradigm by utilizing pairs of single photons entangled in multiple degrees of freedom. Specifically, we make use of the polarization and the energy-time domain of photons, both of which are extensively field tested. We experimentally chart the domain of distillable states and achieve relative fidelity gains up to 13.8%. Compared to the two-copy scheme, the distillation rate of our single-copy scheme is several orders of magnitude higher, paving the way towards high-capacity and noise-resilient quantum networks.

中文翻译:

实验性单拷贝纠缠蒸馏

纠缠现象标志着与经典物理学的最远距离之一,对于量子信息处理是必不可少的。尽管具有根本重要性,但不幸的是,通过光子在长距离上的纠缠分布受到不可避免的退相干效应的阻碍。纠缠蒸馏是一种通过将其浓缩成一对量子比特来恢复这种稀释纠缠质量的方法。传统上,这将通过分配多个光子对并将纠缠分解为单个光子对来完成。在这里,我们通过利用以多个自由度纠缠的单光子对来扭转这一范式。具体来说,我们利用光子的极化和能量时域,这两者都经过了广泛的现场测试。我们通过实验绘制了可蒸馏状态的域,并实现了高达 13.8% 的相对保真度增益。与双副本方案相比,我们的单副本方案的蒸馏率高出几个数量级,为大容量和抗噪声的量子网络铺平了道路。
更新日期:2021-07-23
down
wechat
bug