当前位置: X-MOL 学术Cell Commun. Signal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development
Cell Communication and Signaling ( IF 8.2 ) Pub Date : 2021-07-22 , DOI: 10.1186/s12964-021-00761-8
Jeffrey D Amack 1, 2
Affiliation  

Epithelial-mesenchymal transition (EMT) refers to a process in which epithelial cells lose apical-basal polarity and loosen cell–cell junctions to take on mesenchymal cell morphologies and invasive properties that facilitate migration through extracellular matrix. EMT—and the reverse mesenchymal-epithelial transition (MET)—are evolutionarily conserved processes that are used throughout embryonic development to drive tissue morphogenesis. During adult life, EMT is activated to close wounds after injury, but also can be used by cancers to promote metastasis. EMT is controlled by several mechanisms that depend on context. In response to cell–cell signaling and/or interactions with the local environment, cells undergoing EMT make rapid changes in kinase and adaptor proteins, adhesion and extracellular matrix molecules, and gene expression. Many of these changes modulate localization, activity, or expression of cytoskeletal proteins that mediate cell shape changes and cell motility. Since cellular changes during EMT are highly dynamic and context-dependent, it is ideal to analyze this process in situ in living organisms. Embryonic development of model organisms is amenable to live time-lapse microscopy, which provides an opportunity to watch EMT as it happens. Here, with a focus on functions of the actin cytoskeleton, I review recent examples of how live in vivo imaging of embryonic development has led to new insights into mechanisms of EMT. At the same time, I highlight specific developmental processes in model embryos—gastrulation in fly and mouse embryos, and neural crest cell development in zebrafish and frog embryos—that provide in vivo platforms for visualizing cellular dynamics during EMT. In addition, I introduce Kupffer’s vesicle in the zebrafish embryo as a new model system to investigate EMT and MET. I discuss how these systems have provided insights into the dynamics of adherens junction remodeling, planar cell polarity signaling, cadherin functions, and cytoskeletal organization during EMT, which are not only important for understanding development, but also cancer progression. These findings shed light on mechanisms of actin cytoskeletal dynamics during EMT, and feature live in vivo imaging strategies that can be exploited in future work to identify new mechanisms of EMT and MET.

中文翻译:

EMT的细胞动​​力学:胚胎发育活体成像的经验教训

上皮-间质转化 (EMT) 是指上皮细胞失去顶端-基底极性并松动细胞-细胞连接以呈现间充质细胞形态和促进通过细胞外基质迁移的侵袭特性的过程。EMT 和反向间充质-上皮转化 (MET) 是进化上保守的过程,在整个胚胎发育过程中用于驱动组织形态发生。在成年期间,EMT 被激活以在受伤后闭合伤口,但也可被癌症用于促进转移。EMT 受多种机制控制,这些机制取决于上下文。为响应细胞间信号传导和/或与局部环境的相互作用,经历 EMT 的细胞在激酶和衔接蛋白、粘附和细胞外基质分子以及基因表达方面发生快速变化。许多这些变化调节介导细胞形状变化和细胞运动的细胞骨架蛋白的定位、活性或表达。由于 EMT 期间的细胞变化是高度动态的并且依赖于环境,因此在活生物体中原位分析这一过程是理想的。模式生物的胚胎发育适用于实时延时显微镜,这提供了一个观察 EMT 发生的机会。在这里,以肌动蛋白细胞骨架的功能为重点,我回顾了最近关于胚胎发育的活体成像如何导致对 EMT 机制的新见解的例子。同时,我强调了模型胚胎中的特定发育过程——苍蝇和小鼠胚胎的原肠胚形成,以及斑马鱼和青蛙胚胎中的神经嵴细胞发育——为在 EMT 期间可视化细胞动力学提供了体内平台。此外,我介绍了斑马鱼胚胎中的库普弗囊泡作为研究 EMT 和 MET 的新模型系统。我讨论了这些系统如何为 EMT 期间粘附连接重塑、平面细胞极性信号传导、钙粘蛋白功能和细胞骨架组织的动力学提供见解,这不仅对理解发育很重要,而且对癌症进展也很重要。这些发现揭示了 EMT 期间肌动蛋白细胞骨架动力学的机制,并具有可在未来工作中利用的活体成像策略,以确定 EMT 和 MET 的新机制。我将斑马鱼胚胎中的库普弗囊泡作为一种新的模型系统来研究 EMT 和 MET。我讨论了这些系统如何为 EMT 期间粘附连接重塑、平面细胞极性信号传导、钙粘蛋白功能和细胞骨架组织的动力学提供见解,这不仅对理解发育很重要,而且对癌症进展也很重要。这些发现揭示了 EMT 期间肌动蛋白细胞骨架动力学的机制,并具有可在未来工作中利用的活体成像策略,以确定 EMT 和 MET 的新机制。我将斑马鱼胚胎中的库普弗囊泡作为一种新的模型系统来研究 EMT 和 MET。我讨论了这些系统如何为 EMT 期间粘附连接重塑、平面细胞极性信号传导、钙粘蛋白功能和细胞骨架组织的动力学提供见解,这不仅对理解发育很重要,而且对癌症进展也很重要。这些发现揭示了 EMT 期间肌动蛋白细胞骨架动力学的机制,并具有可在未来工作中利用的活体成像策略,以确定 EMT 和 MET 的新机制。这不仅对理解发展很重要,而且对癌症进展也很重要。这些发现揭示了 EMT 期间肌动蛋白细胞骨架动力学的机制,并具有可在未来工作中利用的活体成像策略,以确定 EMT 和 MET 的新机制。这不仅对理解发展很重要,而且对癌症进展也很重要。这些发现揭示了 EMT 期间肌动蛋白细胞骨架动力学的机制,并具有可在未来工作中利用的活体成像策略,以确定 EMT 和 MET 的新机制。
更新日期:2021-07-22
down
wechat
bug