当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From collections of independent, mindless robots to flexible, mobile, and directional superstructures
Science Robotics ( IF 26.1 ) Pub Date : 2021-07-21 , DOI: 10.1126/scirobotics.abd0272
J F Boudet 1 , J Lintuvuori 1 , C Lacouture 1 , T Barois 1 , A Deblais 2 , K Xie 1 , S Cassagnere 1 , B Tregon 1 , D B Brückner 3 , J C Baret 4, 5 , H Kellay 1, 5
Affiliation  

A swarm of simple active particles confined in a flexible scaffold is a promising system to make mobile and deformable superstructures. These soft structures can perform tasks that are difficult to carry out for monolithic robots because they can infiltrate narrow spaces, smaller than their size, and move around obstacles. To achieve such tasks, the origin of the forces the superstructures develop, how they can be guided, and the effects of external environment, especially geometry and the presence of obstacles, need to be understood. Here, we report measurements of the forces developed by such superstructures, enclosing a number of mindless active rod-like robots, as well as the forces exerted by these structures to achieve a simple function, crossing a constriction. We relate these forces to the self-organization of the individual entities. Furthermore, and based on a physical understanding of what controls the mobility of these superstructures and the role of geometry in such a process, we devise a simple strategy where the environment can be designed to bias the mobility of the superstructure, giving rise to directional motion. Simple tasks—such as pulling a load, moving through an obstacle course, or cleaning up an arena—are demonstrated. Rudimentary control of the superstructures using light is also proposed. The results are of relevance to the making of robust flexible superstructures with nontrivial space exploration properties out of a swarm of simpler and cheaper robots.



中文翻译:

从独立、无意识的机器人集合到灵活、移动和定向的上层结构

一群简单的活性粒子被限制在一个灵活的支架中,是一个很有前途的系统,可以制造可移动和可变形的上层结构。这些软结构可以执行单体机器人难以执行的任务,因为它们可以渗透到比其尺寸还小的狭窄空间并绕过障碍物。为了完成这些任务,需要了解上层建筑所产生的力的来源、如何引导它们以及外部环境的影响,尤其是几何形状和障碍物的存在。在这里,我们报告了由这些上层结构产生的力的测量值,这些上层结构包含许多无意识的主动棒状机器人,以及这些结构为实现简单功能而施加的力,越过收缩。我们将这些力量与个体实体的自组织联系起来。此外,基于对控制这些上层结构的移动性的物理理解以及几何在此过程中的作用,我们设计了一个简单的策略,可以设计环境以偏向于上层结构的移动性,从而产生定向运动. 演示了简单的任务,例如拉重物、穿过障碍路线或清理场地。还提出了使用光对上部结构进行基本控制。结果与从一群更简单、更便宜的机器人中制造出具有重要空间探索特性的坚固灵活的上层结构有关。我们设计了一个简单的策略,其中可以设计环境来偏置上层建筑的移动性,从而产生定向运动。演示了简单的任务,例如拉重物、穿过障碍路线或清理场地。还提出了使用光对上部结构进行基本控制。结果与从一群更简单、更便宜的机器人中制造出具有重要空间探索特性的坚固灵活的上层结构有关。我们设计了一个简单的策略,其中可以设计环境来偏置上层建筑的移动性,从而产生定向运动。演示了简单的任务,例如拉重物、穿过障碍路线或清理场地。还提出了使用光对上部结构进行基本控制。结果与从一群更简单、更便宜的机器人中制造出具有重要空间探索特性的坚固灵活的上层结构有关。

更新日期:2021-07-22
down
wechat
bug