当前位置: X-MOL 学术Surf. Coat. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wear and corrosion of Co-Cr coatings electrodeposited from a trivalent chromium solution: Effect of heat treatment temperature
Surface & Coatings Technology ( IF 5.3 ) Pub Date : 2021-07-21 , DOI: 10.1016/j.surfcoat.2021.127535
Ali Mardanifar 1 , Ali Mohseni 1 , Soheil Mahdavi 1
Affiliation  

Electrodeposition from a trivalent chromium bath was employed to obtain the cobalt‑chromium coatings with a thickness of ~25 μm. The effect of heat treatment temperature on characteristics, mechanical properties, and electrochemical behavior of the coatings, were examined. Heat treatment was performed in a wide range of temperatures (200–800 °C). Heat-treating below 400 °C increased the crystallinity of alloy coatings and had a negligible effect on nodular and cracked morphology. Raising the heat-treating temperature changed the X-ray diffraction patterns by thickening the surface oxide films, which consisted of different oxides (e.g., cobalt chromite spinel). The surface nodules were faded out above 700 °C. The heat-treating below 300 °C decreased the hardness and wear resistance of Co-Cr electrodeposits. The 400 °C heat-treated sample had the highest hardness of ~1000 HV, and the best tribological behavior. The weight loss and coefficient of friction of this sample were 24 and ~2 times smaller than the as-deposited coating. The hardness and wear resistance dropped again with further raising the heat-treating temperature. While detachment of coating during sliding occurred at low-temperature heat-treated samples, the abrasion was the main mechanism of material loss at those heat-treated at higher temperatures. According to the corrosion results, the optimum heat-treating temperature that the highest corrosion resistance could be achieved was 300–500 °C. The corrosion current density of 400 °C heat-treated coating was ~3.7 times smaller than the as-deposited Co-Cr film.



中文翻译:

三价铬溶液电沉积 Co-Cr 涂层的磨损和腐蚀:热处理温度的影响

采用三价铬浴的电沉积获得厚度约为 25 μm 的钴铬涂层。研究了热处理温度对涂层特性、机械性能和电化学行为的影响。热处理在很宽的温度范围内(200-800°C)进行。低于 400 °C 的热处理增加了合金涂层的结晶度,并且对结节和裂纹形貌的影响可以忽略不计。提高热处理温度会通过增厚由不同氧化物(例如钴铬尖晶石)组成的表面氧化膜来改变 X 射线衍射图。表面结节在 700 °C 以上逐渐消失。低于 300 °C 的热处理降低了 Co-Cr 电沉积物的硬度和耐磨性。400 °C 热处理的样品硬度最高,约为 1000 HV,摩擦学性能最好。该样品的重量损失和摩擦系数比沉积涂层小 24 倍和约 2 倍。随着热处理温度的进一步升高,硬度和耐磨性再次下降。虽然低温热处理样品在滑动过程中会发生涂层脱落,但磨损是高温热处理样品材料损失的主要机制。根据腐蚀结果,可达到最高耐腐蚀性的最佳热处理温度为 300-500 ℃。400 °C 热处理涂层的腐蚀电流密度比沉积的 Co-Cr 薄膜小~3.7 倍。该样品的重量损失和摩擦系数比沉积涂层小 24 倍和约 2 倍。随着热处理温度的进一步升高,硬度和耐磨性再次下降。虽然低温热处理样品在滑动过程中会发生涂层脱落,但磨损是高温热处理样品材料损失的主要机制。根据腐蚀结果,可达到最高耐腐蚀性的最佳热处理温度为 300-500 ℃。400 °C 热处理涂层的腐蚀电流密度比沉积的 Co-Cr 薄膜小~3.7 倍。该样品的重量损失和摩擦系数比沉积涂层小 24 倍和约 2 倍。随着热处理温度的进一步升高,硬度和耐磨性再次下降。虽然低温热处理样品在滑动过程中会发生涂层脱落,但磨损是高温热处理样品材料损失的主要机制。根据腐蚀结果,可达到最高耐腐蚀性的最佳热处理温度为 300-500 ℃。400 °C 热处理涂层的腐蚀电流密度比沉积的 Co-Cr 薄膜小~3.7 倍。随着热处理温度的进一步升高,硬度和耐磨性再次下降。虽然低温热处理样品在滑动过程中会发生涂层脱落,但磨损是高温热处理样品材料损失的主要机制。根据腐蚀结果,可达到最高耐腐蚀性的最佳热处理温度为 300-500 ℃。400 °C 热处理涂层的腐蚀电流密度比沉积的 Co-Cr 薄膜小~3.7 倍。随着热处理温度的进一步升高,硬度和耐磨性再次下降。虽然低温热处理样品在滑动过程中会发生涂层脱落,但磨损是高温热处理样品材料损失的主要机制。根据腐蚀结果,可达到最高耐腐蚀性的最佳热处理温度为 300-500 ℃。400 °C 热处理涂层的腐蚀电流密度比沉积的 Co-Cr 薄膜小~3.7 倍。可达到最高耐蚀性的最佳热处理温度为 300-500 ℃。400 °C 热处理涂层的腐蚀电流密度比沉积的 Co-Cr 薄膜小~3.7 倍。可达到最高耐蚀性的最佳热处理温度为 300-500 ℃。400 °C 热处理涂层的腐蚀电流密度比沉积的 Co-Cr 薄膜小~3.7 倍。

更新日期:2021-07-24
down
wechat
bug