当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of a photocatalytic fuel cell using a novel Z-scheme MoS2/rGO/Bi2S3 as electrode degraded antibiotic wastewater
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2021-07-21 , DOI: 10.1016/j.seppur.2021.119276
Tingting Yu 1, 2 , Qingsong Liu 1 , Zhiyuan Zhu 1 , Wenwei Wu 1 , Lifen Liu 3 , Jinlong Zhang 4 , Changfei Gao 5 , Tao Yang 1
Affiliation  

Using a Z-scheme MoS2/rGO/Bi2S3 loaded onto carbon felt (CF) as the anode and BiOBr as the cathode in a photocatalytic fuel cell (PFC) was found to be an efficient photocatalytic system for degrading water contaminants such as antibiotics. Some standard analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible spectrophotometry (UV–Vis DRS), ultraviolet photoelectron spectroscopy (UPS), electron paramagnetic resonance (EPR), high performance liquid chromatography-mass spectrometry (HPLC-MS) and electrochemical analysis (cyclic voltammetry, CV and current-time curve, I-t), were applied to characterize the diverse properties of the electrodes. First, two typical antibiotic contaminants, berberine chloride (BEC) and tetracycline hydrochloride (TC), were used to investigate the degradation ability of the electrodes. As expected, results showed that the degradation of TC and BEC using MoS2/rGO/Bi2S3@CF was consistently above 90%, whereas the degradation achieved by independently using rGO/Bi2S3@CF and rGO/MoS2@CF was consistently below 85% and as low as 53%; this verified the excellent formation of the heterojunction. In addition, to further investigate the performance of MoS2/rGO/Bi2S3@CF, the test results under different conditions were discussed, such as pH, electrochemical property, light reactivity, dark absorption and recyclability in depth. All results of MoS2/rGO/Bi2S3@CF demonstrated good performance than rGO/Bi2S3@CF and rGO/MoS2@CF. Based on the UV–Vis DRS, UPS, EPR and trapping agent experiment results, the electron generated and Z-scheme transport mechanism in the fuel cell was proposed. Moreover, electron transmission from MoS2/rGO/Bi2S3@CF to BiOBr@CF through an external circuit further suppressed the recombination of electron-hole pairs. This new catalytic pollution control route is expected to provide a new way for efficient pollutant degradation with low energy consumption.



中文翻译:

使用新型 Z 型 MoS2/rGO/Bi2S3 作为电极降解抗生素废水构建光催化燃料电池

在光催化燃料电池 (PFC) 中,使用负载在碳毡 (CF) 上的 Z 型 MoS 2 /rGO/Bi 2 S 3作为阳极和 BiOBr 作为阴极被发现是一种有效的光催化系统,用于降解水污染物,例如作为抗生素。一些标准的分析技术,包括扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、X 射线衍射 (XRD)、X 射线光电子能谱 (XPS)、紫外-可见分光光度法 (UV-Vis DRS)、紫外光电子光谱 (UPS)、电子顺磁共振 (EPR)、高效液相色谱-质谱 (HPLC-MS) 和电化学分析(循环伏安法、CV 和电流-时间曲线、),用于表征电极的不同特性。首先,使用两种典型的抗生素污染物氯化小檗碱 (BEC) 和盐酸四环素 (TC) 来研究电极的降解能力。正如预期的那样,结果表明,使用 MoS 2 / rGO /Bi 2 S 3 @CF对 TC 和 BEC 的降解始终高于 90%,而单独使用rGO /Bi 2 S 3 @CF 和 rGO/MoS 2实现的降解@CF 一直低于 85%,低至 53%;这证实了异质结的良好形成。此外,为了进一步研究 MoS 2 /rGO/Bi 2 S 3 的性能@CF,深入讨论了不同条件下的测试结果,如pH值、电化学性能、光反应性、暗吸收和可回收性。MoS 2 / rGO /Bi 2 S 3 @CF 的所有结果都显示出比 rGO/Bi 2 S 3 @CF 和 rGO/MoS 2 @CF 更好的性能。基于UV-Vis DRS、UPS、EPR和捕集剂实验结果,提出了燃料电池中的电子产生和Z-scheme传输机制。此外,MoS 2 /rGO/Bi 2 S 3 的电子传输@CF 通过外部电路到 BiOBr@CF 进一步抑制了电子-空穴对的复合。这种新的催化污染控制路线有望为低能耗高效降解污染物提供新途径。

更新日期:2021-08-13
down
wechat
bug