当前位置: X-MOL 学术Int. J. Engine Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the use of artificial neural networks to model the performance and emissions of a heavy-duty natural gas spark ignition engine
International Journal of Engine Research ( IF 2.5 ) Pub Date : 2021-07-22 , DOI: 10.1177/14680874211034409
Qiao Huang 1 , Jinlong Liu 2 , Christopher Ulishney 2 , Cosmin E Dumitrescu 2
Affiliation  

The use of computational models for internal combustion engine development is ubiquitous. Numerical simulations using simpler to complex physical models can predict engine’s performance and emissions, but they require large computational capabilities. By comparison, statistical methodologies are more economical tools in terms of time and resources. This paper investigated the use of an artificial neural network algorithm to simulate the nonlinear combustion process inside the cylinder. Three engine control variables (i.e. spark timing, mixture equivalence ratio, and engine speed) were set as the model inputs. Outputs included peak cylinder pressure and its location, maximum pressure rise rate, indicated mean effective pressure, ignition lag, combustion phasing, burn duration, exhaust temperature, and engine-out emissions (i.e. nitrogen oxides, carbon monoxide, and unburned hydrocarbons). Eighty percent of the experimental data from a heavy-duty natural gas spark ignition engine were utilized to train the model. The perceptions accurately learned the combustion characteristics and predicted engine responses with acceptable errors, evidenced by close-to-unity coefficient of determination and close-to-zero root-mean-square error. Moreover, the regressors captured the effect of key operating variables on the engine response, suggesting the well-trained models successfully identified the complex relationships and can help assist engine analysis. Overall, the neural network algorithm was appropriate for the application investigated in this study.



中文翻译:

使用人工神经网络模拟重型天然气火花点火发动机的性能和排放

计算模型在内燃机开发中的使用无处不在。使用从简单到复杂的物理模型的数值模拟可以预测发动机的性能和排放,但它们需要大量的计算能力。相比之下,就时间和资源而言,统计方法是更经济的工具。本文研究了使用人工神经网络算法来模拟气缸内的非线性燃烧过程。三个发动机控制变量(即火花正时、混合当量比和发动机转速)被设置为模型输入。输出包括峰值气缸压力及其位置、最大压力上升率、指示平均有效压力、点火延迟、燃烧相位、燃烧持续时间、排气温度和发动机排放物(即氮氧化物、一氧化碳和未燃烧的碳氢化合物)。来自重型天然气火花点火发动机的实验数据的 80% 用于训练模型。感知准确地了解了燃烧特性并预测了具有可接受误差的发动机响应,这可以通过接近于统一的确定系数和接近于零的均方根误差来证明。此外,回归器捕获了关键操作变量对发动机响应的影响,表明训练有素的模型成功识别了复杂的关系,可以帮助辅助发动机分析。总体而言,神经网络算法适用于本研究中调查的应用。来自重型天然气火花点火发动机的实验数据的 80% 用于训练模型。感知准确地了解了燃烧特性并预测了具有可接受误差的发动机响应,这可以通过接近于统一的确定系数和接近于零的均方根误差来证明。此外,回归器捕获了关键操作变量对发动机响应的影响,表明训练有素的模型成功识别了复杂的关系,可以帮助辅助发动机分析。总体而言,神经网络算法适用于本研究中调查的应用。来自重型天然气火花点火发动机的实验数据的 80% 用于训练模型。感知准确地了解了燃烧特性并预测了具有可接受误差的发动机响应,这可以通过接近于统一的确定系数和接近于零的均方根误差来证明。此外,回归器捕获了关键操作变量对发动机响应的影响,表明训练有素的模型成功识别了复杂的关系,可以帮助辅助发动机分析。总体而言,神经网络算法适用于本研究中调查的应用。由接近统一的决定系数和接近于零的均方根误差证明。此外,回归器捕获了关键操作变量对发动机响应的影响,表明训练有素的模型成功识别了复杂的关系,可以帮助辅助发动机分析。总体而言,神经网络算法适用于本研究中调查的应用。由接近统一的决定系数和接近于零的均方根误差证明。此外,回归器捕获了关键操作变量对发动机响应的影响,表明训练有素的模型成功识别了复杂的关系,可以帮助辅助发动机分析。总体而言,神经网络算法适用于本研究中调查的应用。

更新日期:2021-07-22
down
wechat
bug