当前位置: X-MOL 学术Prog. Nucl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficiency analysis of multiple detector effects on MCNP 6.2 simulations
Progress in Nuclear Energy ( IF 3.3 ) Pub Date : 2021-07-22 , DOI: 10.1016/j.pnucene.2021.103892
Özgür Akçalı 1 , Ozan Toker 1 , Bayram Bilmez 2 , Orhan İçelli 1
Affiliation  

An analysis of some variance reduction methods was introduced and compared with the conventional narrow beam geometry for radiation transport problems. Although the Monte Carlo methods provide accurate results in radiation transport problems, their usability requires a high processing infrastructure. Simulation algorithms need miscellaneous mathematical tricks named as variance reduction to achieve precise results with reduced computing resources. These techniques mostly require experience, intuition, and iteration. For this reason, an alternative approach that may be adopted by all users is needed. Proposed method using source-biased quadruplet and octuplet detection geometries need neither additional code nor advanced experience. The designed geometries were tested on various selected materials, energy values and source definitions to prove its availability. The accuracy and the stability of the method were analyzed with all possible parameters such as material and energy dependence (tasks-error/CPU time, detector fluctuation-NPS, relative error-NPS, deviation-NPS, etc.). Besides, to verify the analysis results, some radiography applications were performed. The efficiency of multiple detector usage was found to be dependent on the complexity of the geometry as expected. It may be concluded that the multi-detector usage is efficient for simplified geometries in terms of relative error and computing time. The firstly introduced geometric designs worked steadily over ~10M histories on all trials. For the advised design, up to ~7 times improvement achieved in terms of computing time based on the figure of merit.



中文翻译:

多检测器对 MCNP 6.2 模拟影响的效率分析

介绍了一些方差减少方法的分析,并与用于辐射传输问题的传统窄波束几何结构进行了比较。尽管蒙特卡罗方法在辐射传输问题上提供了准确的结果,但它们的可用性需要高处理基础设施。仿真算法需要称为方差减少的杂项数学技巧,以在减少计算资源的情况下获得精确的结果。这些技术大多需要经验、直觉和迭代。为此,需要一种可供所有用户采用的替代方法。使用偏源四元组和八元组检测几何结构的建议方法既不需要额外的代码,也不需要高级经验。设计的几何形状在各种选定的材料上进行了测试,能源价值和来源定义,以证明其可用性。使用所有可能的参数,例如材料和能量依赖性(任务-误差/CPU 时间、探测器波动-NPS、相对误差-NPS、偏差-NPS 等)分析该方法的准确性和稳定性。此外,为了验证分析结果,还进行了一些射线照相应用。发现多探测器使用的效率取决于预期的几何形状的复杂性。可以得出结论,就相对误差和计算时间而言,多检测器的使用对于简化的几何结构是有效的。首次引入的几何设计在所有试验中稳定运行超过约 1000 万个历史记录。对于建议的设计,在基于品质因数的计算时间方面实现了高达约 7 倍的改进。使用所有可能的参数,例如材料和能量依赖性(任务-误差/CPU 时间、探测器波动-NPS、相对误差-NPS、偏差-NPS 等)分析该方法的准确性和稳定性。此外,为了验证分析结果,还进行了一些射线照相应用。发现多探测器使用的效率取决于预期的几何形状的复杂性。可以得出结论,就相对误差和计算时间而言,多检测器的使用对于简化的几何结构是有效的。首次引入的几何设计在所有试验中稳定运行超过约 1000 万个历史记录。对于建议的设计,在基于品质因数的计算时间方面实现了高达约 7 倍的改进。使用所有可能的参数,例如材料和能量依赖性(任务-误差/CPU 时间、探测器波动-NPS、相对误差-NPS、偏差-NPS 等)分析该方法的准确性和稳定性。此外,为了验证分析结果,还进行了一些射线照相应用。发现多探测器使用的效率取决于预期的几何形状的复杂性。可以得出结论,就相对误差和计算时间而言,多检测器的使用对于简化的几何结构是有效的。首次引入的几何设计在所有试验中稳定运行超过约 1000 万个历史记录。对于建议的设计,在基于品质因数的计算时间方面实现了高达约 7 倍的改进。

更新日期:2021-07-22
down
wechat
bug