当前位置: X-MOL 学术Prog. Aerosp. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of membrane-wing aeroelasticity
Progress in Aerospace Sciences ( IF 11.5 ) Pub Date : 2021-07-21 , DOI: 10.1016/j.paerosci.2021.100738
Sonya Tiomkin 1 , Daniella E. Raveh 2
Affiliation  

Recent developments in micro-technology have been the driving force behind the scientific interest in micro air vehicles (MAVs), as these became feasible in the recent two decades. However, the unique requirements of these palm-sized air vehicles of high maneuverability in the low Reynolds number flow regime, in addition to the demand of fast adaptation to unsteady flow conditions, are practically impossible to attain with rigid wings. The massive flow separation that dominates the upper surface of rigid wings in this flow regime significantly reduces the aerodynamic efficiency of the wing in both steady and unsteady flow, thus presenting harsh limitations on the aircraft’s agility. Seeking a solution for this conundrum brought vast attention to membrane wings, inspired by the wings of bats. Membrane wings are distinguished by their ability to passively adapt to flow conditions, whether these are steady or unsteady by nature. Several review papers have addressed the static aeroelastic response of such wings, focusing on the implementation of such wings in MAVs, with additional details on the dynamic response of membrane wings. In this review paper an overview of recent developments in the understanding of membrane wing aerodynamics is presented, focusing on the dynamic aeroelasticity of membrane wings in steady flow conditions. Special focus is paid to the physical mechanisms that drive membrane oscillations and the aerodynamic benefits of such oscillations.



中文翻译:

膜翼气动弹性综述

微型技术的最新发展是微型飞行器 (MAV) 科学兴趣背后的驱动力,因为这些在最近二十年变得可行。然而,这些手掌大小的飞行器在低雷诺数流态下具有高机动性的独特要求,除了快速适应非定常流动条件的需求外,几乎不可能用刚性机翼实现。在这种流动状态下,在刚性机翼上表面占主导地位的大量流动分离显着降低了机翼在稳态和非稳态流动中的气动效率,从而对飞机的敏捷性提出了严格的限制。为这个难题寻求解决方案引起了对受蝙蝠翅膀启发的膜翅的广泛关注。膜翼以其被动适应流动条件的能力而著称,无论这些条件是稳定的还是不稳定的。几篇评论论文讨论了此类机翼的静态气动弹性响应,重点是在 MAV 中实施此类机翼,并提供了有关薄膜机翼动态响应的更多细节。在这篇综述论文中,概述了膜翼空气动力学理解的最新进展,重点是膜翼在稳定流动条件下的动态气动弹性。特别关注驱动膜振荡的物理机制和这种振荡的空气动力学优势。专注于在 MAV 中实施此类机翼,并提供有关膜翼动态响应的更多细节。在这篇综述论文中,概述了膜翼空气动力学理解的最新进展,重点是膜翼在稳定流动条件下的动态气动弹性。特别关注驱动膜振荡的物理机制和这种振荡的空气动力学优势。专注于在 MAV 中实施此类机翼,并提供有关膜翼动态响应的更多细节。在这篇综述论文中,概述了膜翼空气动力学理解的最新进展,重点是膜翼在稳定流动条件下的动态气动弹性。特别关注驱动膜振荡的物理机制和这种振荡的空气动力学优势。

更新日期:2021-07-21
down
wechat
bug