当前位置: X-MOL 学术Int. J. Aerosp. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Application of an Identification Method to Shock-Induced Vortex Stability in the Transonic Axial Fan Rotor
International Journal of Aerospace Engineering ( IF 1.1 ) Pub Date : 2021-07-21 , DOI: 10.1155/2021/6611300
Yan Xue 1 , Ning Ge 1
Affiliation  

In the present paper, the steady RANS (Reynolds-Averaged Navier-Stokes) simulations based on our independently developed CFD (Computational Fluid Dynamics) solver NUAA-Turbo 2.0, are carried out to investigate the shock wave/tip leakage vortex (SW/TLV) interaction in two representative transonic axial fan rotors, NASA Rotor 67 and NASA Rotor 37. The intent of this study is mainly to verify if an identification method derived from relevant theories is suitable for shock-induced vortex stability in the real engineering environment. As the additional findings, a universal tip vortex model is established and the characteristics of vortex breakdown or not are also summarized under different load levels. To ensure the prediction accuracy of all numerical methods selected in this research, detailed comparisons are made between computational and experimental results before flow analysis. The excellent agreement between the both indicates that the current code is capable of capturing the dominant secondary flow structures and aerodynamic phenomenon, especially the vortex system in tip region and SW/TLV interaction. It is found that three vortical structures such as tip leakage vortex (TLV), shock-induced vortex (SIV), tip separation vortex (TSV) in addition the tip leakage vortex-induced vortex (TLV-IV, which only occurs when the TLV strength increases to a certain extent) frequently exist near the blade tip and then abstracted as a tip vortex model. A stable TLV after passing through the passage shock is commonly characterized by tight rolling-up, slow deceleration and slight expansion. Conversely, the vortex behaves in a breakdown state. The final verification results show that the above two vortex states can be satisfactorily detected by the theoretical discriminant introduced in this work.

中文翻译:

跨音速轴流风机激振涡稳定性辨识方法的工程应用

在本文中,基于我们自主开发的 CFD(计算流体动力学)求解器 NUAA-Turbo 2.0 进行稳态 RANS(雷诺平均纳维-斯托克斯)模拟,以研究冲击波/尖端泄漏涡流(SW/TLV) ) 在两个具有代表性的跨音速轴流风扇转子 NASA Rotor 67 和 NASA Rotor 37 中的相互作用。本研究的目的主要是验证从相关理论推导出的识别方法是否适用于真实工程环境中的激波稳定性。作为额外的发现,建立了一个通用的尖端涡模型,并总结了不同负载水平下涡破裂与否的特征。为保证本研究中选择的所有数值方法的预测精度,在流动分析之前,在计算和实验结果之间进行了详细比较。两者之间的良好一致性表明,当前的代码能够捕获主要的二次流结构和空气动力学现象,尤其是尖端区域的涡流系统和 SW/TLV 相互作用。研究发现,除了叶尖泄漏涡激涡(TLV-IV,仅当 TLV强度增加到一定程度)经常存在于叶尖附近,然后抽象为叶尖涡模型。通过过道激波后稳定的TLV通常具有卷紧、减速缓慢和轻微膨胀的特点。反过来,涡流处于击穿状态。最终的验证结果表明,本文引入的理论判别式可以令人满意地检测到上述两种涡流状态。
更新日期:2021-07-21
down
wechat
bug