当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical Control of Valley-Zeeman Spin-Orbit-Coupling–Induced Spin Precession at Room Temperature
Physical Review Letters ( IF 8.1 ) Pub Date : 2021-07-21 , DOI: 10.1103/physrevlett.127.047202
Josep Ingla-Aynés 1 , Franz Herling 1 , Jaroslav Fabian 2 , Luis E Hueso 1, 3 , Fèlix Casanova 1, 3
Affiliation  

The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has been observed in the ballistic regime and at low temperatures only. However, the strong spin anisotropy and the valley character of the electronic states in 2D materials provide unique control knobs to manipulate spin precession. Here, by manipulating the anisotropic spin-orbit coupling in bilayer graphene by the proximity effect to WSe2, we achieve coherent spin precession in the absence of an external magnetic field, even in the diffusive regime. Remarkably, the sign of the precessing spin polarization can be tuned by a back gate voltage and by a drift current. Our realization of a spin field-effect transistor at room temperature is a cornerstone for the implementation of energy efficient spin-based logic.

中文翻译:

Valley-Zeeman自旋-轨道-耦合-室温下自旋进动的电气控制

自旋电子学的最终目标是在室温下实现电子自旋的电控相干操纵,以实现自旋场效应晶体管等器件。对于传统材料,仅在弹道状态和低温下观察到相干自旋进动。然而,二维材料中强大的自旋各向异性和电子态的谷特性提供了独特的控制旋钮来操纵自旋进动。在这里,通过邻近效应操纵双层石墨烯中的各向异性自旋轨道耦合WSe2,我们在没有外部磁场的情况下实现了相干自旋进动,即使在扩散状态下也是如此。值得注意的是,进动自旋极化的符号可以通过背栅电压和漂移电流进行调整。我们在室温下实现自旋场效应晶体管是实现节能自旋逻辑的基石。
更新日期:2021-07-21
down
wechat
bug