当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic Coupling inY3Fe5O12/Gd3Fe5O12Heterostructures
Physical Review Applied ( IF 3.8 ) Pub Date : 2021-07-19 , DOI: 10.1103/physrevapplied.16.014047
S. Becker 1 , Z. Ren 1, 2, 3 , F. Fuhrmann 1 , A. Ross 1, 4 , S. Lord 1, 2, 5 , S. Ding 1, 2, 6 , R. Wu 1, 7 , J. Yang 6 , J. Miao 3 , M. Kläui 1, 2, 7 , G. Jakob 1, 2
Affiliation  

Ferrimagnetic Y3Fe5O12 (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial Y3Fe5O12/Gd3Fe5O12 (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect and spin Hall magnetoresistance measurements, we determine the alignment of the heterostructure magnetization as a function temperature and external magnetic field. The ferromagnetic coupling between the Fe sublattices of YIG and GIG dominates the overall behavior of the heterostructures. Because of the temperature-dependent gadolinium moment, a magnetic compensation point of the total bilayer system can be identified. This compensation point shifts to lower temperatures with increasing YIG thickness due the parallel alignment of the iron moments. We show that we can control the magnetic properties of the heterostructures by tuning the thickness of the individual layers, opening up a large playground for magnonic devices based on coupled magnetic insulators. These devices could potentially control the magnon transport analogously to electron transport in giant magnetoresistive devices.

中文翻译:

Y3Fe5O12/Gd3Fe5O12异质结构中的磁耦合

亚铁磁性 3512(YIG) 是用于研究磁子特性的原型材料,因为它具有极低的阻尼。通过用具有净磁矩的稀土元素代替钇,我们可以引入额外的自旋自由度。在这里,我们研究外延中的磁耦合3512/3512(YIG/GIG) 通过脉冲激光沉积生长的异质结构。根据体敏感磁力测定法和表面敏感自旋塞贝克效应以及自旋霍尔磁阻测量,我们确定异质结构磁化强度的排列作为温度和外部磁场的函数。之间的铁磁耦合YIG 和 GIG 的亚晶格支配着异质结构的整体行为。由于钆矩与温度有关,因此可以确定整个双层系统的磁补偿点。由于铁矩的平行排列,该补偿点随着 YIG 厚度的增加而转移到较低的温度。我们表明,我们可以通过调整各个层的厚度来控制异质结构的磁性,从而为基于耦合磁绝缘体的磁子器件开辟了广阔的舞台。这些设备可以潜在地控制磁振子传输,类似于巨磁阻器件中的电子传输。
更新日期:2021-07-20
down
wechat
bug