当前位置: X-MOL 学术Astrophys. Space Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relativistic positioning: including the influence of the gravitational action of the Sun and the Moon and the Earth’s oblateness on Galileo satellites
Astrophysics and Space Science ( IF 1.8 ) Pub Date : 2021-07-20 , DOI: 10.1007/s10509-021-03973-z
Neus Puchades Colmenero 1, 2 , Màrius Josep FullanaiAlfonso 1 , José Vicente Arnau Córdoba 3
Affiliation  

Uncertainties in the satellite world lines lead to dominant positioning errors. In the present work, using the approach presented in Puchades and Sáez (Astrophys. Space Sci. 352, 307–320, 2014), a new analysis of these errors is developed inside a great region surrounding Earth. This analysis is performed in the framework of the so-called Relativistic Positioning Systems (RPS). Schwarzschild metric is used to describe the satellite orbits corresponding to the Galileo Satellites Constellation. Those orbits are circular with the Earth as their centre. They are defined as the nominal orbits. The satellite orbits are not circular due to the perturbations they have and to achieve a more realistic description such perturbations need to be taken into account. In Puchades and Sáez (Astrophys. Space Sci. 352, 307–320, 2014) perturbations of the nominal orbits were statistically simulated. Using the formula from Coll et al. (Class. Quantum Gravity. 27, 065013, 2010) a user location is determined with the four satellites proper times that the user receives and with the satellite world lines. This formula can be used with any satellite description, although photons need to travel in a Minkowskian space-time. For our purposes, the computation of the photon geodesics in Minkowski space-time is sufficient as demonstrated in Puchades and Sáez (Adv. Space Res. 57, 499–508, 2016). The difference of the user position determined with the nominal and the perturbed satellite orbits is computed. This difference is defined as the U-error. Now we compute the perturbed orbits of the satellites considering a metric that takes into account the gravitational effects of the Earth, the Moon and the Sun and also the Earth oblateness. A study of the satellite orbits in this new metric is first introduced. Then we compute the U-errors comparing the positions given with the Schwarzschild metric and the metric introduced here. A Runge-Kutta method is used to solve the satellite geodesic equations. Some improvements in the computation of the U-errors using both metrics are introduced with respect to our previous works. Conclusions and perspectives are also presented.



中文翻译:

相对论定位:包括日月引力作用和地球扁率对伽利略卫星的影响

卫星世界线的不确定性导致主要定位误差。在目前的工作中,使用 Puchades 和 Sáez (Astrophys. Space Sci. 352, 307–320, 2014) 中提出的方法,在地球周围的一个大区域内对这些误差进行了新的分析。这种分析是在所谓的相对论定位系统 (RPS) 的框架内进行的。Schwarzschild 度量用于描述对应于伽利略卫星星座的卫星轨道。这些轨道是以地球为中心的圆形。它们被定义为标称轨道。由于存在扰动,卫星轨道不是圆形的,为了实现更现实的描述,需要考虑此类扰动。在 Puchades 和 Sáez (Astrophys. Space Sci. 352, 307–320, 2014) 对标称轨道的扰动进行了统计模拟。使用 Coll 等人的公式。(Class. Quantum Gravity. 27, 065013, 2010) 用户位置由用户接收的四颗卫星的固有时间和卫星世界线确定。该公式可用于任何卫星描述,尽管光子需要在闵可夫斯基时空传播。就我们的目的而言,Minkowski 时空中光子测地线的计算就足够了,如 Puchades 和 Sáez (Adv. Space Res. 57, 499–508, 2016) 所证明的那样。计算用标称和扰动卫星轨道确定的用户位置的差异。这种差异被定义为 U 误差。现在我们考虑考虑地球引力效应的度量来计算卫星的扰动轨道,月球和太阳以及地球的扁率。首先介绍了对这一新指标中卫星轨道的研究。然后我们计算 U 误差,比较给定的 Schwarzschild 度量和这里介绍的度量的位置。Runge-Kutta 方法用于求解卫星测地方程。相对于我们以前的工作,介绍了使用这两个指标计算 U 错误的一些改进。还提出了结论和观点。相对于我们以前的工作,介绍了使用这两个指标计算 U 错误的一些改进。还提出了结论和观点。相对于我们以前的工作,介绍了使用这两个指标计算 U 错误的一些改进。还提出了结论和观点。

更新日期:2021-07-20
down
wechat
bug