当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device
Light: Science & Applications ( IF 20.6 ) Pub Date : 2021-07-20 , DOI: 10.1038/s41377-021-00591-w
Jiamiao Yang 1, 2 , Qiaozhi He 1 , Linxian Liu 1, 3 , Yuan Qu 1 , Rongjun Shao 1 , Bowen Song 4 , Yanyu Zhao 4
Affiliation  

Speed and enhancement are the two most important metrics for anti-scattering light focusing by wavefront shaping (WS), which requires a spatial light modulator with a large number of modulation modes and a fast speed of response. Among the commercial modulators, the digital-micromirror device (DMD) is the sole solution providing millions of modulation modes and a pattern rate higher than 20 kHz. Thus, it has the potential to accelerate the process of anti-scattering light focusing with a high enhancement. Nevertheless, modulating light in a binary mode by the DMD restricts both the speed and enhancement seriously. Here, we propose a multi-pixel encoded DMD-based WS method by combining multiple micromirrors into a single modulation unit to overcome the drawbacks of binary modulation. In addition, to efficiently optimize the wavefront, we adopted separable natural evolution strategies (SNES), which could carry out a global search against a noisy environment. Compared with the state-of-the-art DMD-based WS method, the proposed method increased the speed of optimization and enhancement of focus by a factor of 179 and 16, respectively. In our demonstration, we achieved 10 foci with homogeneous brightness at a high speed and formed W- and S-shape patterns against the scattering medium. The experimental results suggest that the proposed method will pave a new avenue for WS in the applications of biomedical imaging, photon therapy, optogenetics, dynamic holographic display, etc.



中文翻译:

基于多像素编码数字微镜器件的快速波前整形抗散射光聚焦

速度和增强是通过波前整形 (WS) 进行抗散射光聚焦的两个最重要的指标,这需要具有大量调制模式和快速响应速度的空间光调制器。在商用调制器中,数字微镜器件 (DMD) 是唯一提供数百万种调制模式和高于 20 kHz 的模式速率的解决方案。因此,它有可能以高增强加速反散射光聚焦过程。然而,通过DMD以二进制模式调制光严重限制了速度和增强。在这里,我们提出了一种基于多像素编码 DMD 的 WS 方法,通过将多个微镜组合成一个调制单元来克服二进制调制的缺点。此外,为了有效地优化波前,我们采用了可分离的自然进化策略(SNES),它可以对嘈杂的环境进行全局搜索。与最先进的基于 DMD 的 WS 方法相比,所提出的方法将优化和聚焦增强的速度分别提高了 179 和 16 倍。在我们的演示中,我们以高速实现了 10 个具有均匀亮度的焦点,并在散射介质上形成了 W 形和 S 形图案。实验结果表明,所提出的方法将为 WS 在生物医学成像、光子治疗、光遗传学、动态全息显示等方面的应用开辟一条新途径。所提出的方法将优化和增强焦点的速度分别提高了 179 和 16 倍。在我们的演示中,我们以高速实现了 10 个具有均匀亮度的焦点,并在散射介质上形成了 W 形和 S 形图案。实验结果表明,所提出的方法将为 WS 在生物医学成像、光子治疗、光遗传学、动态全息显示等方面的应用开辟一条新途径。所提出的方法将优化和增强焦点的速度分别提高了 179 和 16 倍。在我们的演示中,我们以高速实现了 10 个具有均匀亮度的焦点,并在散射介质上形成了 W 形和 S 形图案。实验结果表明,所提出的方法将为 WS 在生物医学成像、光子治疗、光遗传学、动态全息显示等方面的应用开辟一条新途径。

更新日期:2021-07-20
down
wechat
bug