当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metalorganic chemical vapor deposition of InN quantum dots and nanostructures
Light: Science & Applications ( IF 20.6 ) Pub Date : 2021-07-20 , DOI: 10.1038/s41377-021-00593-8
Caroline E Reilly 1 , Stacia Keller 2 , Shuji Nakamura 1, 2 , Steven P DenBaars 1, 2
Affiliation  

Using one material system from the near infrared into the ultraviolet is an attractive goal, and may be achieved with (In,Al,Ga)N. This III-N material system, famous for enabling blue and white solid-state lighting, has been pushing towards longer wavelengths in more recent years. With a bandgap of about 0.7 eV, InN can emit light in the near infrared, potentially overlapping with the part of the electromagnetic spectrum currently dominated by III-As and III-P technology. As has been the case in these other III–V material systems, nanostructures such as quantum dots and quantum dashes provide additional benefits towards optoelectronic devices. In the case of InN, these nanostructures have been in the development stage for some time, with more recent developments allowing for InN quantum dots and dashes to be incorporated into larger device structures. This review will detail the current state of metalorganic chemical vapor deposition of InN nanostructures, focusing on how precursor choices, crystallographic orientation, and other growth parameters affect the deposition. The optical properties of InN nanostructures will also be assessed, with an eye towards the fabrication of optoelectronic devices such as light-emitting diodes, laser diodes, and photodetectors.



中文翻译:

InN量子点和纳米结构的金属有机化学气相沉积

使用从近红外到紫外的一种材料系统是一个有吸引力的目标,并且可以用 (In,Al,Ga)N 来实现。这种以实现蓝色和白色固态照明而闻名的 III-N 材料系统近年来一直在推动更长的波长。InN 的带隙约为 0.7 eV,可以发射近红外光,可能与目前由 III-As 和 III-P 技术主导的电磁光谱部分重叠。与这些其他 III-V 材料系统的情况一样,量子点和量子破折号等纳米结构为光电器件提供了额外的好处。以 InN 为例,这些纳米结构已经处于开发阶段一段时间了,随着最近的发展,允许将 InN 量子点和虚线合并到更大的器件结构中。本综述将详细介绍 InN 纳米结构的金属有机化学气相沉积的现状,重点关注前体选择、晶体取向和其他生长参数如何影响沉积。还将评估 InN 纳米结构的光学特性,着眼于光电子器件的制造,如发光二极管、激光二极管和光电探测器。

更新日期:2021-07-20
down
wechat
bug