当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of sand particle crushing in split Hopkinson pressure bar tests using the discrete element method
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2021-07-18 , DOI: 10.1016/j.ijimpeng.2021.103974
Sudheer Prabhu 1 , Tong Qiu 1
Affiliation  

The discrete element method (DEM) has been extensively used to study the micro-mechanical behavior of sand subjected to quasi-static strain rates. In most of these studies, the sand specimens were prepared with an upscaled particle size distribution (PSD) to reduce the computational cost. However, the effectiveness of this upscaling approach in replicating the dynamic sand response is not well understood, especially at high stresses where significant particle breakage occurs. In this paper, several split Hopkinson pressure bar (SHPB) tests reported in literature are modeled in DEM using two methodologies: 1) applying the reported strain rates directly to the DEM specimen without accounting for wave propagation in the incident and transmission bars; and 2) modeling the complete SHPB test setup including the incident and transmission bars. The results show that with well-calibrated parameters for contact behavior and particle crushing, specimens with upscaled PSD provide similar dynamic stress-strain response and PSD evolution as those reported in literature. This study shows the importance of particle breakage in the stress-strain response under high stresses as the specimens without particle breakage provide a much stiffer response compared to the specimens with particle breakage. The developed DEM model may be a useful tool to model the complete SHPB test setup as the incident, reflected and transmitted stress waves can be accurately replicated.



中文翻译:

使用离散元法模拟分裂式霍普金森压杆试验中的砂粒破碎

离散元法 (DEM) 已广泛用于研究受准静态应变率影响的沙子的微观力学行为。在这些研究中的大多数中,沙子样本是用放大的粒度分布 (PSD) 制备的,以降低计算成本。然而,这种放大方法在复制动态沙子响应方面的有效性尚不清楚,特别是在发生显着颗粒破裂的高应力下。在本文中,文献中报道的几个拆分霍普金森压力棒 (SHPB) 测试使用两种方法在 DEM 中建模:1) 将报告的应变率直接应用于 DEM 试样,而不考虑入射和传输棒中的波传播;和 2) 对完整的 SHPB 测试设置进行建模,包括入射和传输条。结果表明,对于接触行为和颗粒破碎的良好校准参数,具有放大 PSD 的样品提供了与文献中报道的相似的动态应力应变响应和 PSD 演变。这项研究表明,颗粒破碎在高应力下的应力-应变响应中的重要性,因为与颗粒破碎的样品相比,没有颗粒破碎的样品提供了更刚硬的响应。开发的 DEM 模型可能是对完整的 SHPB 测试设置进行建模的有用工具,因为可以准确地复制入射、反射和传输的应力波。这项研究表明,颗粒破碎在高应力下的应力-应变响应中的重要性,因为与颗粒破碎的样品相比,没有颗粒破碎的样品提供了更刚硬的响应。开发的 DEM 模型可能是对完整的 SHPB 测试设置进行建模的有用工具,因为可以准确地复制入射、反射和传输的应力波。这项研究表明,颗粒破碎在高应力下的应力-应变响应中的重要性,因为与颗粒破碎的样品相比,没有颗粒破碎的样品提供了更刚硬的响应。开发的 DEM 模型可能是对完整的 SHPB 测试设置进行建模的有用工具,因为可以准确地复制入射、反射和传输的应力波。

更新日期:2021-07-25
down
wechat
bug