当前位置: X-MOL 学术Aut. Control Comp. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated Handling and Stability Control with AFS and DYC for 4WID–EVs via Dual Sliding Mode Control
Automatic Control and Computer Sciences ( IF 0.6 ) Pub Date : 2021-07-19 , DOI: 10.3103/s014641162103007x
Mengxiong Lu 1 , Zhicheng Xu 2
Affiliation  

Abstract

To improve the handling and stability for four-wheel-independent-drive electric vehicles (4WID–EVs), an integrated controller of active front-wheel steering (AFS) and direct yaw-moment control (DYC) systems with hierarchical architecture is designed. In order to enhance the handling and stability of 4WID–EVs, the AFS and DYC systems is integrated in the upper controller which contains of sideslip angle and yaw rate controllers. The sideslip angle and yaw rate controllers are designed via dual sliding mode control to calculate the target additional front-wheel steering angle and yaw moment and ensure the actual sideslip angle and yaw rate could track the target values. In the lower controller, the additional front-wheel steering angle is achieved by the steering system, and the target yaw moment is achieved by the driving and braking system. With minimum the tire utilization as target, the Lagrange algorithm is used to optimize distribute tire forces. A simulation model which contains vehicle model and controller model is established in MATLAB/Simulink platform, and the simulation is performed under different simulation condition. The results show that the integrated controller could enhance the handling and stability of vehicle effectively, which is reflected by the actual sideslip angle and yaw rate, and desired values.



中文翻译:

通过双滑模控制为 4WID–EV 提供 AFS 和 DYC 的集成操控和稳定性控制

摘要

为了提高四轮独立驱动电动汽车 (4WID-EV) 的操控性和稳定性,设计了具有分层架构的主动前轮转向 (AFS) 和直接横摆力矩控制 (DYC) 系统的集成控制器。为了提高4WID-EV的操控性和稳定性,AFS和DYC系统集成在包含侧滑角和横摆角速度控制器的上部控制器中。侧滑角和横摆角速度控制器通过双滑模控制设计,计算目标附加前轮转向角和横摆力矩,确保实际侧滑角和横摆角速度跟踪目标值。在下位控制器中,附加前轮转向角由转向系统实现,目标横摆力矩由驱动和制动系统实现。以轮胎利用率最小为目标,采用拉格朗日算法优化轮胎受力分布。在MATLAB/Simulink平台上建立了包含整车模型和控制器模型的仿真模型,并在不同的仿真条件下进行仿真。结果表明,集成控制器能够有效地提高车辆的操纵性和稳定性,这体现在实际侧滑角和偏航率以及期望值上。

更新日期:2021-07-19
down
wechat
bug