当前位置: X-MOL 学术J. Ind. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic exergy analysis: From industrial data to exergy flows
Journal of Industrial Ecology ( IF 4.9 ) Pub Date : 2021-07-19 , DOI: 10.1111/jiec.13168
Charalampos Michalakakis 1 , Jonathan M. Cullen 1
Affiliation  

As the power and transport sectors decarbonize, industrial emissions will become the main focus of decarbonization efforts. Exergy analysis provides a combined material and energy efficiency approach to assess industrial plants, both of which are necessary to tackle industrial emissions. Existing studies typically use simulated, static data that cannot inform real plant operators. This paper performs an exergy analysis on data spanning 2 years from 311 sensors of a real ammonia production site. We develop methods to overcome unique data challenges associated with real industrial data processing, visualize resource flows in Sankey diagrams, and estimate exergy indicators for both the steam methane reforming plant and its constituent processes. We evaluate average conventional and transit exergy efficiencies for the plant (71%, 15%), primary reformer (86%, 40%), secondary reformer (96%, 71%), high-temperature shift (99.7%, 77%), combustor (56%, 55%), and heat exchange section (85%, 82%). Overall exergy losses are 80 MW; the primary reformer and combustor are the two processes with the highest losses at 35 and 33 MW, respectively. Such an analysis can inform both improvement projects and performance finetuning of a real plant while being applicable to any industrial site. Increased availability of cheap wireless sensors and a shift to Industry 4.0 can enable higher resolution and real-time performance monitoring.

中文翻译:

动态火用分析:从工业数据到火用流量

随着电力和交通部门的脱碳,工业排放将成为脱碳工作的主要重点。火用分析提供了一种结合材料和能源效率的方法来评估工业工厂,这两者都是解决工业排放问题所必需的。现有研究通常使用无法告知真实工厂操作员的模拟静态数据。本文对来自真实氨生产现场的 311 个传感器的 2 年数据进行了火用分析。我们开发了一些方法来克服与实际工业数据处理相关的独特数据挑战,在桑基图中可视化资源流,并估计蒸汽甲烷重整工厂及其组成过程的火用指标。我们评估了工厂的平均常规和运输火用效率(71%、15%),一级重整器(86%、40%)、二级重整器(96%、71%)、高温变换(99.7%、77%)、燃烧室(56%、55%)、换热段(85%、82 %)。总火用损失为 80 MW;初级重整器和燃烧器是损失最高的两个过程,分别为 35 和 33 兆瓦。这种分析可以为实际工厂的改进项目和性能微调提供信息,同时适用于任何工业现场。廉价无线传感器的可用性增加和向工业 4.0 的转变可以实现更高分辨率和实时性能监控。初级重整器和燃烧器是损失最高的两个过程,分别为 35 和 33 兆瓦。这种分析可以为实际工厂的改进项目和性能微调提供信息,同时适用于任何工业现场。廉价无线传感器的可用性增加和向工业 4.0 的转变可以实现更高分辨率和实时性能监控。初级重整器和燃烧器是损失最高的两个过程,分别为 35 和 33 兆瓦。这种分析可以为实际工厂的改进项目和性能微调提供信息,同时适用于任何工业现场。廉价无线传感器的可用性增加和向工业 4.0 的转变可以实现更高分辨率和实时性能监控。
更新日期:2021-07-19
down
wechat
bug