当前位置: X-MOL 学术Microbes Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioelectrical Methane Production with an Ammonium Oxidative Reaction under the No Organic Substance Condition.
Microbes and Environments ( IF 2.1 ) Pub Date : 2021-01-01 , DOI: 10.1264/jsme2.me21007
Ha T T Dinh 1, 2 , Hiromi Kambara 1 , Yoshiki Harada 1 , Shuji Matsushita 1, 3 , Yoshiteru Aoi 4 , Tomonori Kindaichi 1 , Noriatsu Ozaki 1 , Akiyoshi Ohashi 1
Affiliation  

The present study investigated bioelectrical methane production from CO2 without organic substances. Even though microbial methane production has been reported at relatively high electric voltages, the amount of voltage required and the organisms contributing to the process currently remain unknown. Methane production using a biocathode was investigated in a microbial electrolysis cell coupled with an NH4+ oxidative reaction at an anode coated with platinum powder under a wide range of applied voltages and anaerobic conditions. A microbial community analysis revealed that methane production simultaneously occurred with biological denitrification at the biocathode. During denitrification, NO3- was produced by chemical NH4+ oxidation at the anode and was provided to the biocathode chamber. H2 was produced at the biocathode by the hydrogen-producing bacteria Petrimonas through the acceptance of electrons and protons. The H2 produced was biologically consumed by hydrogenotrophic methanogens of Methanobacterium and Methanobrevibacter with CO2 uptake and by hydrogenotrophic denitrifiers of Azonexus. This microbial community suggests that methane is indirectly produced without the use of electrons by methanogens. Furthermore, bioelectrical methane production occurred under experimental conditions even at a very low voltage of 0.05 V coupled with NH4+ oxidation, which was thermodynamically feasible.

中文翻译:

在无有机物质条件下通过氨氧化反应生产生物电甲烷。

本研究调查了从不含有机物质的 CO2 生产生物电甲烷。尽管已经报道了在相对较高的电压下产生微生物甲烷,但所需的电压量和促成该过程的生物目前仍然未知。在一个微生物电解池中研究了使用生物阴极的甲烷生产,并在广泛的施加电压和厌氧条件下,在涂有铂粉的阳极上进行 NH4+ 氧化反应。微生物群落分析表明,甲烷产生与生物阴极的生物反硝化作用同时发生。在反硝化过程中,NO3- 在阳极通过化学 NH4+ 氧化产生,并提供给生物阴极室。H2 是由产氢细菌 Petrimonas 通过接受电子和质子在生物阴极产生的。产生的 H2 被 Methanobacterium 和 Methanobrevibacter 的氢营养产甲烷菌与 CO2 吸收以及 Azonexus 的氢营养反硝化菌生物消耗。这种微生物群落表明甲烷是由产甲烷菌在不使用电子的情况下间接产生的。此外,即使在 0.05 V 的极低电压与 NH4+ 氧化相结合的实验条件下,生物电甲烷生产也会发生,这在热力学上是可行的。产生的 H2 被 Methanobacterium 和 Methanobrevibacter 的氢营养产甲烷菌与 CO2 吸收以及 Azonexus 的氢营养反硝化菌生物消耗。这种微生物群落表明甲烷是由产甲烷菌在不使用电子的情况下间接产生的。此外,即使在 0.05 V 的极低电压与 NH4+ 氧化相结合的实验条件下,生物电甲烷生产也会发生,这在热力学上是可行的。产生的 H2 被 Methanobacterium 和 Methanobrevibacter 的氢营养产甲烷菌与 CO2 吸收以及 Azonexus 的氢营养反硝化菌生物消耗。这种微生物群落表明甲烷是由产甲烷菌在不使用电子的情况下间接产生的。此外,即使在 0.05 V 的极低电压与 NH4+ 氧化相结合的实验条件下,生物电甲烷生产也会发生,这在热力学上是可行的。
更新日期:2021-01-01
down
wechat
bug