Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Lamb Waves Based Ultrasonic System for the Simultaneous Data Communication, Defect Inspection, and Power Transmission.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ( IF 3.0 ) Pub Date : 2021-09-27 , DOI: 10.1109/tuffc.2021.3087603
Yongshun Sun , Yunfei Xu , Wei Li , Quanchang Li , Xiaoxi Ding , Wenbin Huang

Lamb-wave-based structural health monitoring (SHM) has attracted extensive attention in recent years. This article aims to realize the functions of data communication, defect detection, and energy transmission through piezoelectric transducers. In this work, the S0 mode at 500 kHz and the A0 mode at 150 kHz are selected as the carrier waves and the optimized excitation frequencies are determined through analytical investigation and frequency sweeping experiments. The S0 mode is used for data communication and defect inspection due to the high excitation frequency and low dispersion properties. A single piezoelectric sensing element acts as the transmitter and a nine-element piezoelectric transducer array (PTA) is the receiver. Their roles exchange in terms of energy transmission based on the A0 mode. Simultaneous data communication and energy transmission are achieved based on the frequency division multiplexing (FDM) strategy. After performing a matched filter on the received signals, the digital data information can be recovered under the interference of the energy transmission signal. The synthetic aperture imaging technology (SAFT) is adopted for accurately locating defects on aluminum plates. In terms of energy transmission, a constructive interference performance is achieved by the transducer array with a transmitted power of 3.81 mW. This system has great potential for health monitoring of the enclosed structure by eliminating the cumbersome wires for powering and communication.

中文翻译:

用于同步数据通信、缺陷检测和电力传输的基于 Lamb 波的超声波系统。

近年来,基于兰姆波的结构健康监测(SHM)引起了广泛关注。本文旨在通过压电换能器实现数据通信、缺陷检测和能量传输等功能。在这项工作中,选择 500 kHz 的 S0 模式和 150 kHz 的 A0 模式作为载波,并通过分析研究和扫频实验确定了优化的激发频率。由于高激发频率和低色散特性,S0 模式用于数据通信和缺陷检查。单个压电传感元件充当发射器,九元件压电换能器阵列 (PTA) 是接收器。他们的角色交换基于A0模式的能量传输。基于频分复用(FDM)策略实现同时数据通信和能量传输。对接收信号进行匹配滤波后,可以在能量传输信号的干扰下恢复数字数据信息。采用合成孔径成像技术(SAFT)准确定位铝板上的缺陷。在能量传输方面,换能器阵列实现了相长干涉性能,传输功率为 3.81 mW。该系统消除了用于供电和通信的繁琐电线,在封闭结构的健康监测方面具有巨大潜力。在能量传输信号的干扰下可以恢复数字数据信息。采用合成孔径成像技术(SAFT)准确定位铝板上的缺陷。在能量传输方面,换能器阵列实现了相长干涉性能,传输功率为 3.81 mW。该系统消除了用于供电和通信的繁琐电线,在封闭结构的健康监测方面具有巨大潜力。在能量传输信号的干扰下可以恢复数字数据信息。采用合成孔径成像技术(SAFT)准确定位铝板上的缺陷。在能量传输方面,换能器阵列实现了相长干涉性能,传输功率为 3.81 mW。该系统消除了用于供电和通信的繁琐电线,在封闭结构的健康监测方面具有巨大潜力。
更新日期:2021-06-08
down
wechat
bug