Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Vivo Motion Correction in Super-Resolution Imaging of Rat Kidneys.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ( IF 3.0 ) Pub Date : 2021-09-27 , DOI: 10.1109/tuffc.2021.3086983
Iman Taghavi , Sofie Bech Andersen , Carlos Armando Villagomez Hoyos , Michael Bachmann Nielsen , Charlotte Mehlin Sorensen , Jorgen Arendt Jensen

Super-resolution (SR) imaging has the potential of visualizing the microvasculature down to the 10- [Formula: see text] level, but motion induced by breathing, heartbeats, and muscle contractions are often significantly above this level. This article, therefore, introduces a method for estimating tissue motion and compensating for this. The processing pipeline is described and validated using Field II simulations of an artificial kidney. In vivo measurements were conducted using a modified bk5000 research scanner (BK Medical, Herlev, Denmark) with a BK 9009 linear array probe employing a pulse amplitude modulation scheme. The left kidney of ten Sprague-Dawley rats was scanned during open laparotomy. A 1:10 diluted SonoVue contrast agent (Bracco, Milan, Italy) was injected through a jugular vein catheter at 100 [Formula: see text]/min. Motion was estimated using speckle tracking and decomposed into contributions from the heartbeats, breathing, and residual motion. The estimated peak motions and their precisions were: heart: axial- [Formula: see text] and lateral- [Formula: see text], breathing: axial- [Formula: see text] and lateral- [Formula: see text], and residual: axial-30 [Formula: see text] and lateral-90 [Formula: see text]. The motion corrected microbubble tracks yielded SR images of both bubble density and blood vector velocity. The estimation was, thus, sufficiently precise to correct shifts down to the 10- [Formula: see text] capillary level. Similar results were found in the other kidney measurements with a restoration of resolution for the small vessels demonstrating that motion correction in 2-D can enhance SR imaging quality.

中文翻译:

大鼠肾脏超分辨率成像中的体内运动校正。

超分辨率 (SR) 成像具有将微脉管系统可视化到 10- [公式:见文字] 级别的潜力,但由呼吸、心跳和肌肉收缩引起的运动通常显着高于此级别。因此,本文介绍了一种估计组织运动并对此进行补偿的方法。使用人工肾脏的 Field II 模拟来描述和验证处理管道。使用改进的 bk5000 研究扫描仪(BK Medical,Herlev,丹麦)和采用脉冲幅度调制方案的 BK 9009 线性阵列探头进行体内测量。在开腹手术期间扫描了十只 Sprague-Dawley 大鼠的左肾。通过颈静脉导管以 100 [公式:见正文]/分钟注射 1:10 稀释的 SonoVue 造影剂(Bracco,米兰,意大利)。使用散斑跟踪估计运动,并将其分解为来自心跳、呼吸和残余运动的贡献。估计的峰值运动及其精度是:心脏:轴向-[公式:见正文]和横向-[公式:见正文],呼吸:轴向-[公式:见正文]和横向-[公式:见正文],和残差:axis-30 [公式:见正文] 和lateral-90 [公式:见正文]。运动校正的微气泡轨迹产生了气泡密度和血液矢量速度的 SR 图像。因此,该估计足够精确以校正向下至 10- [公式:见正文] 毛细血管水平的偏移。在其他肾脏测量中发现了类似的结果,小血管的分辨率恢复,表明 2-D 中的运动校正可以提高 SR 成像质量。
更新日期:2021-06-07
down
wechat
bug