当前位置: X-MOL 学术Nanomater. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characteristics and properties of nitrocellulose/glycidyl azide polymer/2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane nanocomposites synthesized using a sol–gel supercritical method
Nanomaterials and Nanotechnology ( IF 3.1 ) Pub Date : 2019-01-01 , DOI: 10.1177/1847980418825034
Yi Wang 1 , Mi Zhang 1 , Xiaolan Song 2 , Hao Huang 3 , Fengsheng Li 4
Affiliation  

Nitrocellulose/glycidyl azide polymer/2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane nanocomposites, in which 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane nanoparticles uniformly embedded in nitrocellulose/glycidyl azide polymer matrix, were synthesized using a sol–gel supercritical method. The micron morphology, crystal phase, molecular structure, specific surface area, and surface elements were characterized using scanning electron microscopy, X-ray diffractometry, infrared, Brunauer–Emmett–Teller, and X-ray photoelectron spectroscopy analyses, respectively. Thermal analyses were performed, and the kinetic and thermodynamic parameters, such as activation energy, per-exponent factor, rate constant, activation heat, activation free energy, and activation entropy, were calculated. The decomposition products of the nitrocellulose/glycidyl azide polymer matrix and nitrocellulose/glycidyl azide polymer/2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane were also investigated by differential scanning calorimetry–infrared analysis. The result indicated that the main decomposition product of nitrocellulose/glycidyl azide polymer is carbon dioxide and the –N3 group in glycidyl azide polymer decomposed to nitrogen without being detected by infrared spectrometer; the main decomposition products of nitrocellulose/glycidyl azide polymer/2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane are carbon dioxide, nitrous oxide, and water, and few carbon monoxide, methane, and nitrogen oxide are also detected. Energy performances of nitrocellulose/glycidyl azide polymer matrix and nitrocellulose/glycidyl azide polymer/2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane nanocomposites were evaluated, that is, the parameters such as standard specific impulse, characteristic speed, combustion chamber temperature, average molecular weight of combustion products, and explosion heat were calculated. The results illustrated that as the weight percentage of nitrocellulose increases, the values of standard specific impulse, characteristic speed, average molecular weight of combustion products, combustion chamber temperature, and explosion heat increase. This was ascribed to that the oxygen balance of glycidyl azide polymer is substantially lower than that of nitrocellulose, which results in that the chemical energy of glycidyl azide polymer does not release sufficiently. Additionally, as weight percentage of glycidyl azide polymer increases, the impact and friction sensitivity of the composites decrease obviously. This means that glycidyl azide polymer is much more insensitive than nitrocellulose.

中文翻译:

溶胶-凝胶超临界法合成硝基纤维素/缩水甘油基叠氮化物聚合物/2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异纤锌矿型纳米复合材料的特性和性能

硝基纤维素/缩水甘油基叠氮化物聚合物/2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异纤锌矿型纳米复合材料,其中2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异武兹烷纳米粒子均匀嵌入硝化纤维素/缩水甘油基叠氮化物聚合物基质中,使用溶胶-凝胶超临界方法合成。分别使用扫描电子显微镜、X 射线衍射、红外、Brunauer-Emmett-Teller 和 X 射线光电子能谱分析表征微米形态、晶相、分子结构、比表面积和表面元素。进行热分析,并计算动力学和热力学参数,例如活化能、每指数因子、速率常数、活化热、活化自由能和活化熵。硝基纤维素/缩水甘油基叠氮化物聚合物基质和硝基纤维素/缩水甘油基叠氮化物聚合物/2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异武兹烷的分解产物也进行了差异分析。扫描量热法-红外分析。结果表明硝基纤维素/缩水甘油叠氮化物聚合物的主要分解产物为二氧化碳,缩水甘油叠氮化物聚合物中的-N3基团在红外光谱仪检测不到的情况下分解为氮气;硝基纤维素/缩水甘油基叠氮聚合物/2,4,6,8,10,12-六硝基-2,4,6,8,10,12-六氮杂异纤锌矿型烷烃的主要分解产物是二氧化碳、一氧化二氮和水,少量还检测到一氧化碳、甲烷和氮氧化物。硝基纤维素/缩水甘油基叠氮化物聚合物基质和硝基纤维素/缩水甘油基叠氮化物聚合物/2,4,6,8的能量性能,对10,12-六硝基-2,4,6,8,10,12-六氮杂异纤锌矿型纳米复合材料进行了评价,即标准比冲、特征速度、燃烧室温度、燃烧产物平均分子量、爆炸性等参数热量进行了计算。结果表明,随着硝化纤维重量百分比的增加,标准比冲、特征速度、燃烧产物的平均分子量、燃烧室温度和爆炸热的值增加。这归因于缩水甘油叠氮化聚合物的氧平衡明显低于硝基纤维素,导致缩水甘油叠氮化聚合物的化学能不能充分释放。此外,随着缩水甘油叠氮化物聚合物的重量百分比增加,复合材料的冲击和摩擦敏感性明显降低。这意味着缩水甘油叠氮化物聚合物比硝化纤维更不敏感。
更新日期:2019-01-01
down
wechat
bug