当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic analysis of a tri-generation system driven by biomass direct chemical looping combustion process
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2021-07-17 , DOI: 10.1016/j.enconman.2021.114517
Zhuang Sun 1 , Muhammad Aziz 1
Affiliation  

Chemical looping process (CLP) is a promising technology for in-situ CO2 capture without energy penalty. Direct CLP has more compact structure, favorable economic competitiveness, and larger reduction of exergy loss compared to syngas CLP. In this work, a novel biomass direct chemical looping combustion (CLC) driven tri-generation system for the production of cooling, heating, and power is proposed. The proposed system contains a direct CLC section as the prime mover, two gas turbines and an organic Rankine cycle for power generation, an absorption chiller for cooling production, and two heat exchangers to generate heat. First, a thorough thermodynamic analysis is implemented to assess the energy and exergy efficiencies of the proposed system under evaluated design conditions, as well as identify the exergy loss distribution. Second, Sensitivity analysis is conducted to investigate the effects of major operating parameters on the system performances. Third, the performances of the proposed system are compared to syngas CLC based tri-generation system. Thermodynamic analysis results show that the proposed system has high energy efficiency of 90.92% and exergy efficiency of 33.82%. The largest exergy loss takes place in the air reactor, accounting for 34.42% of total exergy loss, followed by fuel reactor and absorption chiller, which are 30.09% and 15.37%, respectively. Besides, the proposed system has better thermodynamic performances than syngas CLC driven tri-generation, whose energy and exergy efficiencies are 69% and 23.4%, respectively.



中文翻译:

生物质直接化学循环燃烧过程驱动的三联产系统热力学分析

化学循环法 (CLP) 是一种很有前景的原位 CO 2 技术捕获而没有能量损失。与合成气中电相比,直接中电结构更紧凑,经济竞争力更强,火用损失降低幅度更大。在这项工作中,提出了一种用于生产冷却、加热和电力的新型生物质直接化学循环燃烧 (CLC) 驱动的三联产系统。提议的系统包含一个直接 CLC 部分作为原动机、两个燃气轮机和一个用于发电的有机朗肯循环、一个用于冷却生产的吸收式冷却器和两个用于产生热量的热交换器。首先,进行彻底的热力学分析,以评估所提议系统在评估设计条件下的能量和火用效率,并确定火用损失分布。第二,进行灵敏度分析以研究主要运行参数对系统性能的影响。第三,将所提出系统的性能与基于合成气 CLC 的三联产系统进行比较。热力学分析结果表明,所提出的系统具有90.92%的高能效和33.82%的火用效率。空气反应器的火用损失最大,占总火用损失的34.42%,其次是燃料反应器和吸收式制冷机,分别为30.09%和15.37%。此外,所提出的系统具有比合成气 CLC 驱动的三联产更好的热力学性能,其能量和火用效率分别为 69% 和 23.4%。热力学分析结果表明,所提出的系统具有90.92%的高能效和33.82%的火用效率。空气反应器的火用损失最大,占总火用损失的34.42%,其次是燃料反应器和吸收式制冷机,分别为30.09%和15.37%。此外,所提出的系统具有比合成气 CLC 驱动的三联产更好的热力学性能,其能量和火用效率分别为 69% 和 23.4%。热力学分析结果表明,所提出的系统具有90.92%的高能效和33.82%的火用效率。空气反应器的火用损失最大,占总火用损失的34.42%,其次是燃料反应器和吸收式制冷机,分别为30.09%和15.37%。此外,所提出的系统具有比合成气 CLC 驱动的三联产更好的热力学性能,其能量和火用效率分别为 69% 和 23.4%。

更新日期:2021-07-18
down
wechat
bug