当前位置: X-MOL 学术Surf. Coat. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Achieving excellent wear and corrosion properties in laser additive manufactured CrMnFeCoNi high-entropy alloy by laser shock peening
Surface & Coatings Technology ( IF 5.3 ) Pub Date : 2021-07-17 , DOI: 10.1016/j.surfcoat.2021.127504
Zhaopeng Tong 1, 2 , Xuyang Pan 2 , Wangfan Zhou 2 , Yu Yang 2 , YunXia Ye 1, 2 , Daishu Qian 3 , Xudong Ren 2
Affiliation  

The present work aims to fabricate CrMnFeCoNi high-entropy alloy (HEA) possessing outstanding wear and corrosion properties via laser additive manufacturing (LAM) and subsequent laser shock peening (LSP). The surface morphology, microstructure, microhardness and residual stress of LAM-fabricated specimen were characterized before and after LSP. Additionally, sliding wear and electrochemical corrosion experiments were conducted to evaluate the suitability of LSP for improving wear and corrosion resistance. Results indicated that friction coefficients and wear rates of LAM-fabricated specimens obviously decreased after LSP. Both untreated and LSP-treated specimens displayed uniform wear mechanisms, including abrasive and adhesive wear, while the wear damage level of the high-energy LSP-treated specimen was the mildest. Moreover, LSP-treated specimens exhibited lower corrosion current density and higher corrosion potential as compared with the untreated specimen, suggesting an enhancement in corrosion resistance. The hardened surface layer had positive effects on inhibiting furrow and spalling to resist material removal, and the compressive residual stress enhanced the adhesion of tribo-layers on the worn surface to protect the underlying layer from further damage. The grain refinement and compressive residual stress synergistically contributed to form compact passive films, thereby restraining the aggression of corrosive ions to enhance the corrosion resistance.



中文翻译:

通过激光冲击强化在激光增材制造的 CrMnFeCoNi 高熵合金中获得优异的磨损和腐蚀性能

目前的工作旨在通过激光增材制造 (LAM) 和随后的激光冲击强化 (LSP) 制造具有出色磨损和腐蚀性能的 CrMnFeCoNi 高熵合金 (HEA)。在 LSP 前后对 LAM 制造的试样的表面形貌、显微组织、显微硬度和残余应力进行了表征。此外,还进行了滑动磨损和电化学腐蚀实验,以评估 LSP 提高耐磨性和耐腐蚀性的适用性。结果表明,LSP 后,LAM 制备的试样的摩擦系数和磨损率明显降低。未经处理和 LSP 处理的试样均表现出均匀的磨损机制,包括磨料磨损和粘着磨损,而高能 LSP 处理的试样的磨损损伤水平最温和。而且,与未经处理的试样相比,经过 LSP 处理的试样表现出较低的腐蚀电流密度和较高的腐蚀电位,表明耐腐蚀性能有所提高。硬化的表层对抑制开沟和剥落以抵抗材料去除具有积极作用,残余压应力增强了摩擦层在磨损表面的附着力,以保护下层免受进一步损坏。晶粒细化和压缩残余应力协同形成致密的钝化膜,从而抑制腐蚀性离子的侵袭,提高耐腐蚀性。硬化的表层对抑制开沟和剥落以抵抗材料去除具有积极作用,残余压应力增强了摩擦层在磨损表面的附着力,以保护下层免受进一步损坏。晶粒细化和压缩残余应力协同形成致密的钝化膜,从而抑制腐蚀性离子的侵袭,提高耐腐蚀性。硬化的表层对抑制开沟和剥落以抵抗材料去除具有积极作用,残余压应力增强了摩擦层在磨损表面的附着力,以保护下层免受进一步损坏。晶粒细化和压缩残余应力协同形成致密的钝化膜,从而抑制腐蚀性离子的侵袭,提高耐腐蚀性。

更新日期:2021-08-05
down
wechat
bug