当前位置: X-MOL 学术Solid State Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DFT study of CO2 adsorption properties on pristine, vacancy and doped graphenes
Solid State Communications ( IF 2.1 ) Pub Date : 2021-07-17 , DOI: 10.1016/j.ssc.2021.114436
Chengrui Wang 1, 2 , Yanhong Fang 1, 2 , Huamei Duan 1, 2 , Guangfen Liang 1, 2 , Wanying Li 1, 3 , Dengfu Chen 1, 2 , Mujun Long 1, 2
Affiliation  

Through DFT calculation, the adsorption properties, geometry changes and charge transfer of CO2 molecule on pristine graphene (PG), vacancy defect graphene (VG) and doped graphene (DG) are investigated. The results show that different adsorption forms of CO2 on PG and VG are physisorption through van der Waals force with few charge transfer. On PG, it shows weak physisorption. On VG, it is strong physisorption. Therefore, the appearance of defect can increase adsorption ability for CO2. When CO2 parallel to the H-site of PG and monoatomic vacancy graphene (M-VG), the adsorption structure is the most stable, which is similar with literature. On DG, N-doped can not enhance the adsorption and charge transfer ability, and this result is consistent with co-doped system of Cu/N-DG and Ni/N-DG. While Cu or Ni-doped can increase adsorption and charge transfer ability, and decrease the adsorption distance. When CO2 on Cu-DG, Cu/N-DG, Ni-DG and Ni/N-DG, these adsorption processes are chemisorption process in which new chemical bonds are formed. Adding defects and Cu/Ni atoms to graphene can serve as an excellent adsorption material for the preparation of catalysts to activate CO2. Among them, Cu-DG has the best performance. Moreover, through electronic band structures and density of states analysis, we find that vacancy and Cu/Ni-doped can open the band gap, increase the width of the pseudo-gap, and strengthen the adsorption and activation ability of CO2 gas molecular in heterogeneous catalytic reaction based on graphene support.



中文翻译:

原始、空位和掺杂石墨烯对 CO 2吸附特性的DFT 研究

通过DFT计算,研究了CO 2分子在原始石墨烯(PG)、空位缺陷石墨烯(VG)和掺杂石墨烯(DG)上的吸附性能、几何变化和电荷转移。结果表明,CO 2在PG和VG上的不同吸附形式是通过范德华力进行物理吸附,电荷转移很少。在PG上,它显示出弱物理吸附。在 VG 上,它是强物理吸附。因此,缺陷的出现可以增加对CO 2 的吸附能力。当 CO 2与PG和单原子空位石墨烯(M-VG)的H位平行,吸附结构最稳定,与文献相似。在DG上,N掺杂不能增强吸附和电荷转移能力,这一结果与Cu/N-DG和Ni/N-DG的共掺杂体系一致。而Cu或Ni掺杂可以增加吸附和电荷转移能力,并减少吸附距离。当CO 2在Cu-DG、Cu/N-DG、Ni-DG和Ni/N-DG上时,这些吸附过程是形成新化学键的化学吸附过程。在石墨烯中添加缺陷和 Cu/Ni 原子可以作为制备催化剂以活化 CO 2的优良吸附材料. 其中Cu-DG性能最好。此外,通过电子能带结构和态密度分析,我们发现空位和Cu/Ni掺杂可以打开带隙,增加赝隙宽度,增强CO 2气体分子对CO 2气体分子的吸附和活化能力。基于石墨烯载体的多相催化反应。

更新日期:2021-07-21
down
wechat
bug