当前位置: X-MOL 学术SIAM J. Sci. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models
SIAM Journal on Scientific Computing ( IF 3.0 ) Pub Date : 2021-07-15 , DOI: 10.1137/20m1362942
Alexandros Beskos , Dan Crisan , Ajay Jasra , Nikolas Kantas , Hamza Ruzayqat

SIAM Journal on Scientific Computing, Volume 43, Issue 4, Page A2555-A2580, January 2021.
We consider the problem of parameter estimation for a class of continuous-time state space models (SSMs). In particular, we explore the case of a partially observed diffusion, with data also arriving according to a diffusion process. Based upon a standard identity of the score function, we consider two particle filter based methodologies to estimate the score function. Both methods rely on an online estimation algorithm for the score function, as described, e.g., in [P. Del Moral, A. Doucet, and S. S. Singh, M$2$AN Math. Model. Numer. Anal., 44 (2010), pp. 947--975], of $\mathcal{O}(N^2)$ cost, with $N\in\mathbb{N}$ the number of particles. The first approach employs a simple Euler discretization and standard particle smoothers and is of cost $\mathcal{O}(N^2 + N\Delta_l^{-1})$ per unit time, where $\Delta_l=2^{-l}$, $l\in\mathbb{N}_0$, is the time-discretization step. The second approach is new and based upon a novel diffusion bridge construction. It yields a new backward-type Feynman--Kac formula in continuous time for the score function and is presented along with a particle method for its approximation. Considering a time-discretization, the cost is $\mathcal{O}(N^2\Delta_l^{-1})$ per unit time. To improve computational costs, we then consider multilevel methodologies for the score function. We illustrate our parameter estimation method via stochastic gradient approaches in several numerical examples.


中文翻译:

一类连续时间状态空间模型的基于分数的参数估计

SIAM 科学计算杂志,第 43 卷,第 4 期,第 A2555-A2580 页,2021 年 1 月。
我们考虑一类连续时间状态空间模型(SSM)的参数估计问题。特别是,我们探索了部分观察到的扩散的情况,数据也是根据扩散过程到达的。基于评分函数的标准身份,我们考虑两种基于粒子滤波器的方法来估计评分函数。这两种方法都依赖于评分函数的在线估计算法,如在 [P. Del Moral、A. Doucet 和 SS Singh,M$2$AN 数学。模型。数字。Anal., 44 (2010), pp. 947--975],$\mathcal{O}(N^2)$ 成本,其中 $N\in\mathbb{N}$ 是粒子的数量。第一种方法采用简单的欧拉离散化和标准粒子平滑器,每单位时间的成本为 $\mathcal{O}(N^2 + N\Delta_l^{-1})$,其中 $\Delta_l=2^{- l}$, $l\in\mathbb{N}_0$, 是时间离散化步骤。第二种方法是新的,基于新的扩散桥结构。它为评分函数在连续时间内产生了一个新的后向型 Feynman--Kac 公式,并与粒子方法一起给出了它的近似值。考虑到时间离散化,每单位时间的成本是 $\mathcal{O}(N^2\Delta_l^{-1})$。为了提高计算成本,我们然后考虑评分函数的多级方法。我们在几个数值例子中通过随机梯度方法说明了我们的参数估计方法。考虑到时间离散化,每单位时间的成本是 $\mathcal{O}(N^2\Delta_l^{-1})$。为了提高计算成本,我们然后考虑评分函数的多级方法。我们在几个数值例子中通过随机梯度方法说明了我们的参数估计方法。考虑到时间离散化,每单位时间的成本是 $\mathcal{O}(N^2\Delta_l^{-1})$。为了提高计算成本,我们然后考虑评分函数的多级方法。我们在几个数值例子中通过随机梯度方法说明了我们的参数估计方法。
更新日期:2021-07-16
down
wechat
bug