当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular dynamics simulation of liquid argon flow in a nanoscale channel
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2021-07-15 , DOI: 10.1016/j.ijthermalsci.2021.107166
Qiangqiang Sun 1 , Yong Zhao 2 , Kwing-So Choi 1 , Xuerui Mao 1
Affiliation  

The convective heat transfer in the Micro/ Nanoscale channel is of significant importance in engineering applications, and the classical macroscopic theory is invalid at depicting its physical processes and mechanisms. In this study, molecular dynamics (MD) simulations are conducted to investigate the heat transfer of liquid argon flow through a nanoscale channel. The results show that the fully developed bulk temperature agrees with the continuum based solution of the analytical energy equation at channel height 24 nm, while this agreement reduces with the decrease of the height due to the nanoscale features. At height 6 nm, velocity slip exists around the hydrophobic wall, and enhanced near-wall viscosity of liquid and reduced velocity slip length are observed at larger fluid–wall interaction strength. A region around 2 Å  wide without liquid atoms is formed at the hydrophilic wall, leading to a zero velocity in this hollow domain and a no-slip boundary condition. Most importantly, the thermal slip length is remarkably dependent on the liquid density layering in the proximity of the wall and inversely proportional to the first peak value of liquid adjacent to the interface. This observation provides a new idea to tune the heat dissipation properties at the fluid–wall interface by controlling the liquid density layering.



中文翻译:

纳米通道中液氩流动的分子动力学模拟

微/纳米通道中的对流传热在工程应用中具有重要意义,经典宏观理论无法描述其物理过程和机制。在这项研究中,进行了分子动力学 (MD) 模拟以研究液态氩流通过纳米级通道的热传递。结果表明,完全发展的体温度与通道高度 24 处的解析能量方程的基于连续介质的解一致n,而由于纳米级特征,这种一致性随着高度的降低而降低。高度 6n,疏水壁周围存在速度滑移,并且在较大的流体 - 壁相互作用强度下观察到液体的近壁粘度增加和速度滑移长度减小。一个区域大约 2一种 宽而没有液体原子在亲水壁上形成,导致该空心域中的速度为零和无滑移边界条件。最重要的是,热滑移长度显着取决于壁附近的液体密度分层,并且与靠近界面的液体的第一个峰值成反比。这一观察结果提供了一种通过控制液体密度分层来调整流体-壁面界面的散热特性的新思路。

更新日期:2021-07-16
down
wechat
bug