当前位置: X-MOL 学术Eng. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relationship between the spatial distribution of landslides and rock mass strength, and implications for the driving mechanism of landslides in tectonically active mountain ranges
Engineering Geology ( IF 6.9 ) Pub Date : 2021-07-16 , DOI: 10.1016/j.enggeo.2021.106281
Xueliang Wang , John J. Clague , Giovanni Battista Crosta , Juanjuan Sun , Douglas Stead , Shengwen Qi , Luqing Zhang

The relationship between landslides and rock mass strength is fundamental for assessing landslide hazards. Some researchers have proposed that there is an inverse relationship between the number of landslides and rock mass strength. However, in some tectonically active mountain ranges, higher rates of landsliding appear to be associated with greater rock mass strength. We investigated the relation between landslides and rock mass strength in the Langxian (LX), Lulang (LL), and Tongmai (TM) regions in southeastern Tibet by identifying and mapping 294 large bedrock landslides using 10-m resolution lidar bare-earth imagery. An inverse relationship between topographic relief and the slope angle of historical landslides demonstrates that rock mass strength is an important factor controlling relief in the study area. Applying Culmann's method, we back-calculated rock mass strengths ranging from 60 to 770 kPa at the landscape scale. Our data show that, at the landscape scale, more landslides have occurred on the hillslopes with greater rock mass strength than on those with lower rock mass strength. We conclude that the stability of slopes in our study areas is controlled by rock mass strength, but the dominant drivers of failure are rock uplift and river incision, rather than a reduction in rock strength as has been proposed in some tectonically passive regions.

更新日期:2021-07-16
down
wechat
bug