当前位置: X-MOL 学术Int. J. Mod. Phys. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Entropy-based theory of thermomagnetic phenomena
International Journal of Modern Physics B ( IF 2.6 ) Pub Date : 2021-07-14 , DOI: 10.1142/s0217979221501903
Andrei Sergeev 1 , Michael Reizer 2
Affiliation  

We show that in the linear response approximation only entropy provides coupling between thermal and electric phenomena. The dissipationless quantum currents — magnetization, superconducting, persistent and topological edge currents — do not produce and transfer entropy and may be excluded from final formulas for thermomagnetic coefficients. The magnetization energy flux, cM ×E, in crossed electric and magnetic fields strongly modifies the Poynting vector in magnetic materials and metamaterials, but do not contribute to the heat current. Calculating entropy fluxes of fluctuating Cooper pairs in pure and disordered superconductors, we obtained the fluctuation Nernst coefficient proportional to kBT/𝜖F (𝜖F is the Fermi energy). We also introduce the thermomagnetic entropy per unit charge and derive the Nernst coefficient proportional to the difference of the thermoelectric and thermomagnetic entropies. This explains the Sondheimer cancellation and high sensitivity of thermomagnetic phenomena to correlations. In 2D superconductors, the transport entropy transferred by a vortex moving through the background formed by vortex–antivortex pairs is the configuration entropy of kB ln 2, which strongly exceeds the intrinsic entropy of vortex core. Beyond the linear response, the nonentropic forces can lead to phenomena unexpected from thermodynamics, such as vortex attraction to the moving hot spot. Quantum currents do not transfer entropy and may be used as ideal connectors to quantum nanodetectors.

中文翻译:

基于熵的热磁现象理论

我们表明,在线性响应近似中,只有熵提供了热现象和电现象之间的耦合。无耗散的量子电流——磁化、超导、持久和拓扑边缘电流——不产生和传递熵,并且可能被排除在热磁系数的最终公式之外。磁化能量通量,C ×,在交叉电场和磁场中强烈修改磁性材料和超材料中的坡印廷矢量,但对热电流没有贡献。计算纯和无序超导体中波动的库珀对的熵通量,我们得到了波动的能斯特系数,与ķ/𝜖F(𝜖F是费米能量)。我们还引入了每单位电荷的热磁熵,并推导出与热电熵和热磁熵之差成比例的能斯特系数。这解释了 Sondheimer 抵消和热磁现象对相关性的高敏感性。在二维超导体中,涡旋穿过由涡-反涡对形成的背景所传递的输运熵是ķ ln 2,这大大超过了涡核的固有熵。除了线性响应之外,非熵力还可能导致热力学中意想不到的现象,例如涡旋吸引到移动的热点。量子电流不传递熵,可用作量子纳米探测器的理想连接器。
更新日期:2021-07-14
down
wechat
bug