当前位置: X-MOL 学术Theory Comput. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Univariate Ideal Membership Parameterized by Rank, Degree, and Number of Generators
Theory of Computing Systems ( IF 0.6 ) Pub Date : 2021-07-15 , DOI: 10.1007/s00224-021-10053-w
V. Arvind 1 , Abhranil Chatterjee 1 , Rajit Datta 2 , Partha Mukhopadhyay 2
Affiliation  

Let \({\mathbb {F}}[X]\) be the polynomial ring in the variables X = {x1,x2,…,xn} over a field \({\mathbb {F}}\). An ideal I = 〈p1(x1),…,pn(xn)〉 generated by univariate polynomials \(\{p_{i}(x_{i})\}_{i=1}^{n}\) is a univariate ideal. Motivated by Alon’s Combinatorial Nullstellensatz we study the complexity of univariate ideal membership: Given \(f\in {\mathbb {F}}[X]\) by a circuit and polynomials pi the problem is test if fI. We obtain the following results.

  • Suppose f is a degree-d, rank-r polynomial given by an arithmetic circuit where i : 1 ≤ ir are linear forms in X. We give a deterministic time dO(r) ⋅poly(n) division algorithm for evaluating the (unique) remainder polynomial f(X)modI at any point \(\vec {a}\in {\mathbb {F}}^{n}\). This yields a randomized nO(r) algorithm for minimum vertex cover in graphs with rank-r adjacency matrices. It also yields a new nO(r) algorithm for evaluating the permanent of a n × n matrix of rank r, over any field \(\mathbb {F}\).

  • Let f be over rationals with \(\deg (f)=k\) treated as fixed parameter. When the ideal \(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{n}^{e_{n}}}\right \rangle \), we can test ideal membership in randomized O((2e)k). On the other hand, if each pi has all distinct rational roots we can check if fI in randomized O(nk/2) time, improving on the brute-force \(\left (\begin {array}{cc}{n+k}\\ k \end {array}\right )\)-time search.

  • If \(I=\left \langle {p_{1}(x_{1}), \ldots , p_{k}(x_{k})}\right \rangle \), with k as fixed parameter, then ideal membership testing is W[2]-hard. The problem is MINI[1]-hard in the special case when \(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{k}^{e_{k}}}\right \rangle \).



中文翻译:

由等级、度数和生成器数量参数化的单变量理想隶属度

\({\mathbb {F}}[X]\)是变量X = { x 1 , x 2 ,..., x n } 中的多项式环在域\({\mathbb {F}}\) . 由单变量多项式\(\{p_{i}(x_{i})\}_{i=1}^{n生成的理想I = 〈p 1 ( x 1 ),…, p n ( x n )〉}\)是一个单变量的理想。受 Alon 的组合 Nullstellensatz 的启发,我们研究了单变量理想隶属度的复杂性:给定\(f\in {\mathbb {F}}[X]\)通过电路和多项式p i问题是测试fI。我们得到以下结果。

  • 假设f是由算术电路给出的d阶、r阶多项式,其中i : 1 ≤ irX中的线性形式。我们给出了一个确定性时间d O ( r ) ⋅poly( n ) 除法算法,用于在任何点评估(唯一的)余数多项式f ( X )mod I \(\vec {a}\in {\mathbb {F}} ^{n}\)。这产生了一个随机的n O ( r )具有秩r邻接矩阵的图中最小顶点覆盖的算法。它还产生了一个新的n O ( r )算法,用于在任何字段\(\mathbb {F}\) 上评估n × n秩为r 的矩阵的永久值。

  • f超过有理数,\(\deg (f)=k\)被视为固定参数。当理想\(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{n}^{e_{n}}}\right \rangle \),我们可以测试理想随机O ((2 e ) k ) 中的成员资格。另一方面,如果每个p i都有所有不同的有理根,我们可以在随机O ( n k /2 ) 时间内检查fI是否改进了蛮力\(\left (\begin {array}{ cc}{n+k}\\ k \end {array}\right )\) - 时间搜索。

  • 如果\(I=\left \langle {p_{1}(x_{1}), \ldots , p_{k}(x_{k})}\right \rangle \),以k为固定参数,则理想成员资格测试是 W[2]-hard。当\(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{k}^{e_{k}}} \right \rangle \)

更新日期:2021-07-15
down
wechat
bug