当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrodynamic/acoustic splitting approach with flow-acoustic feedback for universal subsonic noise computation
Journal of Computational Physics ( IF 3.8 ) Pub Date : 2021-07-15 , DOI: 10.1016/j.jcp.2021.110548
Roland Ewert , Johannes Kreuzinger

A generalized approach to decompose the compressible Navier-Stokes equations into an equivalent set of coupled equations for flow and acoustics is introduced. As a significant extension to standard hydrodynamic/acoustic splitting methods, the approach provides the essential coupling terms, which account for the feedback from the acoustics to the flow. A unique simplified version of the split equation system with feedback is derived that conforms to the compressible Navier-Stokes equations in the subsonic flow regime, where the feedback reduces to one additional term in the flow momentum equation. Subsonic simulations are conducted for flow-acoustic feedback cases using a scale-resolving run-time coupled hierarchical Cartesian mesh solver, which operates with different explicit time step sizes for incompressible flow and acoustics. The first simulation case focuses on the tone of a generic flute. With the flow-acoustic feedback term included, the simulation produces the tone characteristics similar to those obtained by Kühnelt [1] with a Lattice-Boltzmann method. In a contrasting manner, the simulation lacks the proper tone without the feedback term included. As the second simulation case, a thick plate in a duct is studied at various low Mach numbers around the Parker-β-mode resonance. The simulations reveal the flow-acoustic feedback characteristics in very good agreement with results from experiment of Welsh et al. [2]. Simulations and theoretical considerations reveal that the feedback term does not reduce the stable convective flow based time step size of the flow equations.



中文翻译:

用于通用亚音速噪声计算的具有流动-声学反馈的流体动力/声学分离方法

介绍了一种将可压缩 Navier-Stokes 方程分解为一组等效的流动和声学耦合方程的通用方法。作为标准流体动力学/声学分裂方法的重要扩展,该方法提供了基本的耦合项,它解释了从声学到流动的反馈。导出了一种独特的带反馈的分裂方程系统的简化版本,它符合亚音速流态中的可压缩 Navier-Stokes 方程,其中反馈减少到流动动量方程中的一个附加项。使用尺度解析运行时耦合分层笛卡尔网格求解器对流动-声学反馈情况进行亚音速模拟,该求解器以不同的显式时间步长运行,用于不可压缩的流动和声学。第一个模拟案例侧重于普通长笛的音调。包含流动声学反馈项后,模拟产生的音调特性类似于 Kühnelt [1] 使用 Lattice-Boltzmann 方法获得的音调特性。相比之下,模拟缺乏正确的音调,而没有包含反馈项。作为第二个模拟案例,在 Parker 周围以各种低马赫数研究管道中的厚板 -β-模式共振。模拟结果与 Welsh 等人的实验结果非常吻合。[2]。模拟和理论考虑表明,反馈项不会减少基于稳定对流流动方程的时间步长。

更新日期:2021-07-26
down
wechat
bug