当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical simulations of simple frigate with suction flow control over the deck
Ocean Engineering ( IF 4.6 ) Pub Date : 2021-07-14 , DOI: 10.1016/j.oceaneng.2021.109464
R. Bardera 1 , J.C. Matías 1 , E. Barroso 1
Affiliation  

The air wake generated behind a frigate superstructure is a very complex and unsteady three-dimensional flow characterized by highly turbulent flow structures with great velocity gradients that result in flow separation over the flight deck where helicopter operations take a significant role. Naturally, this turbulent flow should be removed or, at least, reduced as maximum as possible to avoid accidents during the interaction between frigates and helicopters. This paper involves experimental and numerical analysis on a simple frigate model (SFS2) to understand and simulate the adverse effect of the turbulent flow of the air wake over the deck and tries to minimize it as with active flow control. The experimental study has been performed in the Low Speed Wind Tunnel nº1 of Instituto Nacional de Técnica Aeroespacial ‘‘Esteban Terradas'’ (INTA) with Particle Image Velocimetry (PIV) to obtain the velocity field over the flight deck. The frigate has been tested for the headwind condition of 0° (wind aligned with the flight deck) with a velocity of 10 m/s. The active flow control consists on generating suction on the flight deck by a mesh of holes. Several configurations of this suction mesh have been studied according to the diameter and location of holes and suction intensity. The suction mesh configuration with the highest diameter and flow rate presents the greatest aerodynamic improvement. The low-speed area over the deck is reduced from 36% to a minimum of 3%.



中文翻译:

甲板吸入流量控制的简易护卫舰的实验和数值模拟

护卫舰上层建筑后产生的空气尾流是一种非常复杂且不稳定的三维流动,其特征是具有很大速度梯度的高度湍流结构,导致飞行甲板上的流动分离,直升机操作在飞行甲板上发挥重要作用。当然,这种湍流应该被去除,或者至少尽可能地减少,以避免在护卫舰和直升机之间的相互作用过程中发生事故。本文涉及对简单护卫舰模型 (SFS2) 的实验和数值分析,以了解和模拟甲板上空气尾流的湍流的不利影响,并尝试像主动流动控制一样将其最小化。实验研究是在 Instituto Nacional de Técnica Aeroespacial ''Esteban Terradas' 的低速风洞 1 号进行的 ' (INTA) 使用粒子图像测速仪 (PIV) 获得飞行甲板上的速度场。该护卫舰已经在 0°(风与驾驶舱​​对齐)的逆风条件下以 10 m/s 的速度进行了测试。主动流量控制包括通过孔网在飞行甲板上产生吸力。根据孔的直径和位置以及吸力强度研究了这种吸网的几种配置。具有最高直径和流速的吸入网配置呈现出最大的空气动力学改进。甲板上的低速区域从 36% 减少到最低 3%。主动流量控制包括通过孔网在飞行甲板上产生吸力。根据孔的直径和位置以及吸力强度研究了这种吸网的几种配置。具有最高直径和流速的吸入网配置呈现出最大的空气动力学改进。甲板上的低速区域从 36% 减少到最低 3%。主动流量控制包括通过孔网在飞行甲板上产生吸力。根据孔的直径和位置以及吸力强度研究了这种吸网的几种配置。具有最高直径和流速的吸入网配置呈现出最大的空气动力学改进。甲板上的低速区域从 36% 减少到最低 3%。

更新日期:2021-07-14
down
wechat
bug