当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deformable High Loading Liquid Metal Nanoparticles Composites for Thermal Energy Management
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2021-07-14 , DOI: 10.1002/aenm.202101387
Hyunwoo Bark 1 , Matthew Wei Ming Tan 1 , Gurunathan Thangavel 1 , Pooi See Lee 1
Affiliation  

The emergence of soft electronics has led to the need for thermal management with deformable material. Recent efforts have focused on incorporating EGaIn microparticles (101 µm) into elastomer forming a thermal conductive composites. However, the shape deformation and coalescence of EGaIn particles under mechanical stress often lead to parasitic electrical conduction, imposing limitations on its utilization in thermal management. Increasing the loading of EGaIn nanoparticles (>20 vol%) often leads to brittleness of the composite. Herein, a strategy to obtain thermally conductive and soft elastomers with a high-volume ratio of EGaIn nanoparticles (44 vol%) is introduced. Surface modification of EGaIn nanoparticles with carboxylic acid terminated polydimethylsiloxane (COOH-PDMS-COOH) coupled with the in situ formation of a PDMS matrix by crosslinking with the surface-modified EGaIn nanoparticles leads to dense EGaIn nanoparticles in a PDMS matrix with effective thermal transport. Notably, despite the high-volume ratio of EGaIn nanoparticles in the elastomer, the composite maintains a low elastic modulus (6.91 kPa) and remains electrically insulating even under mechanical stress. In addition, a distinctive anisotropic thermal conductivity of the elastomer is established upon stretching. This elastomer can be utilized as a thermal interface layer for thermoelectric devices. The resulting thermoelectric performance has promise in applications such as wearable thermo-haptic or thermo-sensing devices.

中文翻译:

用于热能管理的可变形高负载液态金属纳米粒子复合材料

软电子的出现导致需要使用可变形材料进行热管理。最近的努力集中在掺入 EGaIn 微粒 ( 10 1 µm) 进入弹性体,形成导热复合材料。然而,EGaIn 颗粒在机械应力下的形状变形和聚结通常会导致寄生导电,从而限制了其在热管理中的应用。增加 EGaIn 纳米颗粒的负载量 (>20 vol%) 通常会导致复合材料变脆。在此,介绍了一种获得具有高体积比的 EGaIn 纳米颗粒(44 vol%)的导热软弹性体的策略。用羧酸封端的聚二甲基硅氧烷 (COOH-PDMS-COOH) 对 EGaIn 纳米颗粒进行表面改性,再加上通过与表面改性的 EGaIn 纳米颗粒交联而原位形成 PDMS 基质,从而在 PDMS 基质中形成致密的 EGaIn 纳米颗粒,并具有有效的热传输。尤其,尽管弹性体中 EGaIn 纳米颗粒的体积比很高,但该复合材料仍保持低弹性模量 (6.91 kPa),即使在机械应力下也能保持电绝缘。此外,弹性体独特的各向异性热导率是在拉伸时建立的。这种弹性体可用作热电器件的热界面层。由此产生的热电性能在可穿戴热触觉或热传感设备等应用中具有前景。这种弹性体可用作热电器件的热界面层。由此产生的热电性能在可穿戴热触觉或热传感设备等应用中具有前景。这种弹性体可用作热电器件的热界面层。由此产生的热电性能在可穿戴热触觉或热传感设备等应用中具有前景。
更新日期:2021-09-16
down
wechat
bug