当前位置: X-MOL 学术Eur. J. Soil Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial pathways account for the pH effect on soil N2O production
European Journal of Soil Biology ( IF 3.7 ) Pub Date : 2021-07-14 , DOI: 10.1016/j.ejsobi.2021.103337
Yi Zhang 1 , Jun Zhao 1, 2 , Xinqi Huang 1, 2 , Yi Cheng 1, 2 , Zucong Cai 1, 2, 3 , Jinbo Zhang 1, 2, 3 , Christoph Müller 4, 5
Affiliation  

Clarifying the responses of different N2O production pathways to pH change is helpful to better understand the effect of pH on N2O emission from soils. A15N tracing study was carried out on subtropical forest (SF) and cropland (SC) soil in 30-day pH manipulation treatments to quantify the effect of pH on autotrophic nitrification, heterotrophic nitrification and denitrification-derived N2O. Gene abundances of autotrophic nitrification (AOA-amoA, AOB-amoA) and denitrification (nirK, nirS, nosZ) -related N2O production were determined to identify the microbial mechanism behind the pH effect on N2O production. The results showed that the total N2O production rate (N2Ot) of the SF soil was 4.56 and 4.86 μg N kg−1 day−1 at pH 3.5 and 4.5, respectively, which was significantly higher than the other treatments. Similarly, the highest N2Ot of the SC soil was also observed in pH 3.5 treatment (7.15 μg N kg−1 day−1). Both N2O production rate via denitrification (N2Od) and heterotrophic nitrification (N2Oh) markedly increased, while the N2O production rate via autotrophic nitrification (N2Oa) markedly decreased by decreasing pH in both the SF and SC soil. Thus, denitrification and heterotrophic nitrification were responsible for the high N2O production under strongly acidic conditions. The abundance of nosZ gene was significantly and negatively correlated with N2Od (P < 0.05), and the abundance of AOB-amoA was significantly and positively correlated with N2Oa (P < 0.01). The results of the structural equation modeling (SEM) analysis revealed that soil pH generated a more direct effect on the denitrifying and ammonia-oxidizing gene abundance, in turn, affected N2Od and N2Oa, respectively. In addition, soil pH exerted a significant effect on both the bacterial 16S rRNA and fungal ITS rDNA gene abundance (P < 0.05). However, the role of soil fungi and bacteria on N2Oh could not be determined in this study.



中文翻译:

微生物途径解释了 pH 值对土壤 N 2 O 产生的影响

阐明不同N 2 O 生产途径对pH 变化的响应有助于更好地了解pH 对土壤N 2 O 排放的影响。对亚热带森林 (SF) 和农田 (SC) 土壤进行了为期 30 天的 pH 操纵处理的15 N 示踪研究,以量化 pH 对自养硝化、异养硝化和反硝化衍生的 N 2 O 的影响。自养硝化 (AOA- amoA , AOB- amoA ) 和反硝化 ( nirK , nirS , nosZ ) 相关的 N 2确定 O 产量是为了确定 pH 值对 N 2 O 产量的影响背后的微生物机制。结果表明, 在pH 3.5和4.5下,SF土壤的总N 2 O产生率(N 2 O t)分别为4.56和4.86 μg N kg -1 day -1,显着高于其他处理。类似地,在pH 3.5 处理(7.15 μg N kg -1-1)中也观察到SC 土壤的最高N 2 O t。均为N 2通过反硝化(N 2 O生成率2 ö d)和异养硝化(N2 O h ) 显着增加,而通过自养硝化作用 (N 2 O a )产生的 N 2 O 的生成率随着 SF 和 SC 土壤中 pH 值的降低而显着降低。因此,反硝化作用和异养硝化作用是在强酸性条件下产生高 N 2 O 的原因。nosZ基因丰度与N 2 O d显着负相关(P  < 0.05),AOB- amoA丰度与N 2 O a显着正相关(P < 0.01)。结构方程模型(SEM)分析结果表明,土壤pH值对反硝化和氨氧化基因丰度产生更直接的影响,进而分别影响N 2 O d和N 2 O a。此外,土壤pH值对细菌16S rRNA和真菌ITS rDNA基因丰度均有显着影响(P  < 0.05)。然而,本研究无法确定土壤真菌和细菌对 N 2 O h的作用。

更新日期:2021-07-14
down
wechat
bug