当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Harnessing manufacturing elements to select local process parameters for metal additive manufacturing: A case study on a superconducting solenoid coil
Additive Manufacturing ( IF 10.3 ) Pub Date : 2021-07-14 , DOI: 10.1016/j.addma.2021.102140
Julian Ferchow 1 , Manuel Biedermann 2 , Pascal Müller 2 , Bernhard Auchmann 3 , André Brem 4 , Mirko Meboldt 2
Affiliation  

In additive manufacturing (AM), low geometrical tolerances, high-quality material properties, and low surface roughness are challenges. To increase the process capabilities, a promising concept is to tailor process parameters for the fabrication of a part. Instead of selecting identical process parameters to the geometry of the whole part, different sets of process parameters are assigned to different regions named manufacturing elements (MEs). The ME approach offers three main advantages: significant reduction of required sacrificial support structures based on the reduced build angles and less post-processing efforts; reduced AM processing time due to less sacrificial support structures and a higher laser speed; and local adjustment of the material and surface properties. Previous studies have examined the ME approach and applied it to simplified test samples. This study shows an end-to-end implementation of the ME approach for the fabrication of a real-world industrial part and highlights the associated opportunities and challenges for the implementation. The application is demonstrated for a complex-shaped industrial part that can only be manufactured using the ME approach. The industrial part is a winding former of a superconducting solenoid coil. The implementation consists of three major steps: (1) the development of a process parameter model for laser-based powder bed fusion (L-PBF) and stainless steel 316 L; (2) segmentation of the part into MEs; and (3) use of the enhanced design freedom for surface texturing. The ME approach facilitated support-free fabrication of the part with build angles of as low as 25°. The enhanced design freedom enabled surface texturing, which allowed the maximum shear strength to be improved by 63% compared to that of a nontextured surface. The results are discussed, and possible enhancements and research directions are outlined, such as the automated assignment of process parameter sets. The results are applicable to reduce the costs of a superconducting solenoid coil for the treatment of cancer with proton beams. This can enable a larger number of patients to have access to this cancer treatment. In addition, the results are further applicable to increase the performance of the future circular collider at CERN.



中文翻译:

利用制造元素为金属增材制造选择本地工艺参数:超导螺线管线圈的案例研究

在增材制造 (AM) 中,低几何公差、高质量材料特性和低表面粗糙度是挑战。为了提高工艺能力,一个有前景的概念是为零件的制造定制工艺参数。不是为整个零件的几何形状选择相同的工艺参数,而是将不同的工艺参数集分配给名为制造元素 (ME) 的不同区域。ME 方法提供了三个主要优点:基于减少的构建角度和更少的后处理工作,显着减少了所需的牺牲支撑结构;由于更少的牺牲支撑结构和更高的激光速度,减少了 AM 处理时间;以及材料和表面特性的局部调整。以前的研究已经检查了 ME 方法并将其应用于简化的测试样本。本研究展示了 ME 方法用于制造真实工业零件的端到端实施,并强调了实施的相关机遇和挑战。该应用针对只能使用 ME 方法制造的复杂形状的工业零件进行了演示。工业部分是超导螺线管线圈的绕组架。实施包括三个主要步骤:(1)开发基于激光的粉末床融合工艺参数模型(该应用针对只能使用 ME 方法制造的复杂形状的工业零件进行了演示。工业部分是超导螺线管线圈的绕组架。实施包括三个主要步骤:(1)开发基于激光的粉末床融合工艺参数模型(该应用针对只能使用 ME 方法制造的复杂形状的工业零件进行了演示。工业部分是超导螺线管线圈的绕组架。实施包括三个主要步骤:(1)开发基于激光的粉末床融合工艺参数模型(-PBF) 和不锈钢 316 L;(2) 将零件分割成 ME;(3) 使用增强的表面纹理设计自由度。ME 方法促进了零件的无支撑制造,构建角度低至 25°。增强的设计自由度实现了表面纹理化,与非纹理化表面相比,最大剪切强度提高了 63%。讨论了结果,并概述了可能的改进和研究方向,例如过程参数集的自动分配。结果适用于降低用于使用质子束治疗癌症的超导螺线管线圈的成本。这可以使更多的患者获得这种癌症治疗。此外,

更新日期:2021-07-27
down
wechat
bug