当前位置: X-MOL 学术Waste Dispos. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solid state anaerobic digestion of water poor feedstock for methane yield: an overview of process characteristics and challenges
Waste Disposal & Sustainable Energy ( IF 3.6 ) Pub Date : 2021-07-14 , DOI: 10.1007/s42768-021-00076-x
Kunwar Paritosh 1 , Vivekanand Vivekanand 1 , Vinod Kumar 2 , Yadira Bajon Fernandez 2 , Frederic Coulon 2 , Nidhi Pareek 3 , Dinabandhu Sahoo 4 , Tanja Radu 5 , Nupur Kesharwani 6
Affiliation  

Solid state anaerobic digestion (SSAD) of water poor feedstock may be a promising technology for energy recovery. Feedstocks having high solid concentration like lignocellulosic biomass, crop residues, forestry waste and organic fraction of municipal waste may be the appropriate feedstock for its biochemical conversion into energy carries like biomethane through SSAD. Compared to liquid state anaerobic digestion (LSAD), SSAD can handle higher organic loading rates (OLR), requires less water and smaller reactor volume and may have lower energy demand for heating or stirring and higher volumetric methane productivity. Besides these, pathogen inactivation may also be achieved in SSAD of biodegradable waste. Around 60% of recently built AD systems have adopted SSAD technology. However, the process stability of an SSAD system may have several constraints like limited mass transfer, process inhibitors and selection of digester type and should be addressed prior to the implementation of SSAD technology. In this article, a comprehensive overview of the key aspects influencing the performance of SSAD is discussed along with the need for mathematical modelling approaches. Further to this, reactor configuration for SSAD and digestate management requirement and practice for solid-state condition are reviewed for a better insight of SSAD technology



中文翻译:

用于甲烷产量的贫水原料的固态厌氧消化:工艺特性和挑战概述

贫水原料的固态厌氧消化 (SSAD) 可能是一种很有前途的能量回收技术。具有高固体浓度的原料如木质纤维素生物质、作物残留物、林业废物和城市废物的有机部分可能是其生化转化为能量的合适原料,如通过 SSAD 的生物甲烷。与液态厌氧消化 (LSAD) 相比,SSAD 可以处理更高的有机负载率 (OLR),需要更少的水和更小的反应器体积,并且可能具有更低的加热或搅拌能量需求和更高的甲烷容积生产率。除此之外,还可以在可生物降解废物的 SSAD 中实现病原体灭活。最近构建的 AD 系统中约有 60% 采用了 SSAD 技术。然而,SSAD 系统的过程稳定性可能有几个限制因素,如有限的传质、过程抑制剂和消化器类型的选择,应在实施 SSAD 技术之前解决。在本文中,全面概述了影响 SSAD 性能的关键方面以及对数学建模方法的需求。此外,还审查了 SSAD 的反应器配置以及固态条件的消化物管理要求和实践,以更好地了解 SSAD 技术 讨论了影响 SSAD 性能的关键方面的全面概述以及对数学建模方法的需求。此外,还审查了 SSAD 的反应器配置以及固态条件的消化物管理要求和实践,以更好地了解 SSAD 技术 讨论了影响 SSAD 性能的关键方面的全面概述以及对数学建模方法的需求。此外,还审查了 SSAD 的反应器配置以及固态条件的消化物管理要求和实践,以更好地了解 SSAD 技术

更新日期:2021-07-14
down
wechat
bug