当前位置: X-MOL 学术Calcolo › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exactness and convergence properties of some recent numerical quadrature formulas for supersingular integrals of periodic functions
Calcolo ( IF 1.7 ) Pub Date : 2021-07-13 , DOI: 10.1007/s10092-021-00414-9
Avram Sidi 1
Affiliation  

In a recent work, we developed three new compact numerical quadrature formulas for finite-range periodic supersingular integrals \(I[f]={\mathop\int{\!\!\!\!\!\!=}}^{\,\,b}_{\!\!a} f(x)\,dx\), where \(f(x)=g(x)/(x-t)^3,\) assuming that \(g\in C^\infty [a,b]\) and f(x) is T-periodic, \(T=b-a\). With \(h=T/n\), these numerical quadrature formulas read

$$\begin{aligned} {\widehat{T}}{}^{(0)}_n[f]&=h\sum ^{n-1}_{j=1}f(t+jh) -\frac{\pi ^2}{3}\,g'(t)\,h^{-1}+\frac{1}{6}\,g'''(t)\,h,\\ {\widehat{T}}{}^{(1)}_n[f]&=h\sum ^n_{j=1}f(t+jh-h/2) -\pi ^2\,g'(t)\,h^{-1}, \\ {\widehat{T}}{}^{(2)}_n[f]&=2h\sum ^n_{j=1}f(t+jh-h/2)- \frac{h}{2}\sum ^{2n}_{j=1}f(t+jh/2-h/4). \end{aligned}$$

We also showed that these formulas have spectral accuracy; that is,

$$\begin{aligned} {\widehat{T}}{}^{(s)}_n[f]-I[f]=o(n^{-\mu })\quad \text {as }n\rightarrow \infty \quad \forall \mu >0. \end{aligned}$$

In the present work, we continue our study of these formulas for the special case in which \(f(x)=\frac{\cos \frac{\pi (x-t)}{T}}{\sin ^3\frac{\pi (x-t)}{T}}\,u(x)\), where u(x) is in \(C^\infty ({\mathbb {R}})\) and is T-periodic. Actually, we prove that \({\widehat{T}}{}^{(s)}_n[f]\), \(s=0,1,2,\) are exact for a class of singular integrals involving T-periodic trigonometric polynomials of degree at most \(n-1\); that is,

$$\begin{aligned} {\widehat{T}}{}^{(s)}_n[f]=I[f]\quad \text {when } f(x)=\frac{\cos \frac{\pi (x-t)}{T}}{\sin ^3\frac{\pi (x-t)}{T}}\,\sum ^{n-1}_{m=-(n-1)} c_m\exp (\mathrm {i}2m\pi x/T). \end{aligned}$$

We also prove that, when u(z) is analytic in a strip \(\big |\text {Im}\,z\big |<\sigma \) of the complex z-plane, the errors in all three \({\widehat{T}}{}^{(s)}_n[f]\) are \(O(e^{-2n\pi \sigma /T})\) as \(n\rightarrow \infty \), for all practical purposes.



中文翻译:

近期一些周期函数超奇异积分数值求积公式的精确性和收敛性

在最近的一项工作中,我们为有限范围周期超奇异积分开发了三个新的紧凑数值求积公式\(I[f]={\mathop\int{\!\!\!\!\!\!=}}^{ \,\,b}_{\!\!a} f(x)\,dx\),其中\(f(x)=g(x)/(xt)^3,\)假设\(g \in C^\infty [a,b]\)f ( x ) 是T周期的,\(T=ba\)。随着\(h=T/n\),这些数值求积公式读取

$$\begin{aligned} {\widehat{T}}{}^{(0)}_n[f]&=h\sum ^{n-1}_{j=1}f(t+jh) - \frac{\pi ^2}{3}\,g'(t)\,h^{-1}+\frac{1}{6}\,g'''(t)\,h,\\ {\widehat{T}}{}^{(1)}_n[f]&=h\sum ^n_{j=1}f(t+jh-h/2) -\pi ^2\,g' (t)\,h^{-1}, \\ {\widehat{T}}{}^{(2)}_n[f]&=2h\sum ^n_{j=1}f(t+jh -h/2)- \frac{h}{2}\sum ^{2n}_{j=1}f(t+jh/2-h/4)。\end{对齐}$$

我们还表明这些公式具有光谱精度;那是,

$$\begin{aligned} {\widehat{T}}{}^{(s)}_n[f]-I[f]=o(n^{-\mu })\quad \text {as }n \rightarrow \infty \quad \forall \mu >0。\end{对齐}$$

在目前的工作中,我们继续研究这些特殊情况的公式,其中\(f(x)=\frac{\cos \frac{\pi (xt)}{T}}{\sin ^3\frac {\pi (xt)}{T}}\,u(x)\),其中u ( x ) 在\(C^\infty ({\mathbb {R}})\) 中并且是T周期的。实际上,我们证明了\({\widehat{T}}{}^{(s)}_n[f]\) , \(s=0,1,2,\)对于一类涉及T -阶次至多\(n-1\) 的周期三角多项式;那是,

$$\begin{aligned} {\widehat{T}}{}^{(s)}_n[f]=I[f]\quad \text {when } f(x)=\frac{\cos \frac {\pi (xt)}{T}}{\sin ^3\frac{\pi (xt)}{T}}\,\sum ^{n-1}_{m=-(n-1)} c_m\exp (\mathrm {i}2m\pi x/T)。\end{对齐}$$

我们还证明,当u ( z )在复z平面的条带\(\big |\text {Im}\,z\big |<\sigma \)中解析时,所有三个\( {\widehat{T}}{}^{(s)}_n[f]\)\(O(e^{-2n\pi \sigma /T})\)作为\(n\rightarrow \infty \ ),用于所有实际目的。

更新日期:2021-07-13
down
wechat
bug