当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The greenhouse gas emissions’ footprint and net energy ratio of utility-scale electro-chemical energy storage systems
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2021-07-12 , DOI: 10.1016/j.enconman.2021.114497
Md Mustafizur Rahman 1 , Eskinder Gemechu 1 , Abayomi Olufemi Oni 1 , Amit Kumar 1
Affiliation  

Electro-chemical batteries are widely used in portable devices and transportation, but they can also be used in the electricity grid for various applications. The assessment of the environmental impacts of electro-chemical storage systems for stationary use has received little attention. In this study, data-intensive, bottom-up life cycle assessment models were developed to assess the life cycle net energy ratios (NERs) and greenhouse gas (GHG) emissions of utility-scale stationary applications of five electro-chemical energy storage systems: sodium-sulfur, lithium-ion, valve-regulated lead-acid, nickel–cadmium, and vanadium redox flow. Four stationary application scenarios were considered: bulk energy storage, transmission and distribution (T&D) investment deferral, frequency regulation, and support of voltage regulation. The Li-ion storage system has the highest NER and lowest GHG emissions in every scenario. The life cycle GHG emissions range from 715 to 784 kg-CO2eq for sodium-sulfur, 625–659 kg-CO2eq for lithium-ion, 749–803 kg-CO2eq for valve-regulated lead-acid, 742–806 kg-CO2eq for nickel–cadmium, and 800–963 kg-CO2eq for vanadium redox flow per MWh of electricity delivered, depending on the application scenario. The results are highly influenced by the operation phase that involves charging the batteries. Lithium-ion and sodium-sulfur storage systems are the most suitable for all the application scenarios because of their longer cycle lives and higher energy densities.



中文翻译:

公用事业规模电化学储能系统的温室气体排放足迹和净能量比

电化学电池广泛用于便携式设备和交通工具,但它们也可用于电网的各种应用。对固定使用的电化学存储系统的环境影响的评估很少受到关注。在本研究中,开发了数据密集型、自下而上的生命周期评估模型,以评估五种电化学储能系统的公用事业规模固定应用的生命周期净能量比 (NER) 和温室气体 (GHG) 排放:钠硫、锂离子、阀控铅酸、镍镉和钒氧化还原流量。考虑了四种固定式应用场景:大容量储能、输配电(T&D)投资延期、频率调节和电压调节的支持。锂离子存储系统在每种情况下都具有最高的 NER 和最低的温室气体排放。生命周期温室气体排放范围为 715 至 784 kg-CO2当量对钠硫,625-659公斤-CO 2当量的锂离子,749-803公斤-CO 2当量为阀门调节铅-酸,742-806公斤-CO 2当量为镍-镉,和800–963 kg-CO 2 eq 钒氧化还原流量每 MWh 输送的电力,取决于应用场景。结果在很大程度上受到涉及电池充电的操作阶段的影响。锂离子和钠硫存储系统因其更长的循环寿命和更高的能量密度而最适合所有应用场景。

更新日期:2021-07-13
down
wechat
bug