当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage
Nano Energy ( IF 16.8 ) Pub Date : 2021-07-13 , DOI: 10.1016/j.nanoen.2021.106338
Tingxian Li 1 , Minqiang Wu 1 , Si Wu 1 , Shizhao Xiang 1 , Jiaxing Xu 1 , Jingwei Chao 1 , Taisen Yan 1 , Tao Deng 2 , Ruzhu Wang 1
Affiliation  

Thermal energy harvesting and storage with phase change materials (PCMs) plays a broad and critical role in solar-thermal utilization and energy management. However, the intrinsic low thermal conductivity of PCMs and slow thermal transport are great challenges for accelerating PCM-based thermal energy harvesting & storage. Herein, we report a synergetic strategy for synthesizing scalable highly conductive phase change composites (PCCs) and tailoring thermal transports by aligning self-assembled large-size reticulated graphite nanoplatelets (RGNPs) inside PCCs. The vertically-aligned and layered large-size RGNPs enable the directional thermal and electrical conductivities of PCCs up to 33.5 W/mK and 323 S/cm respectively at RGNPs loading below 25 wt%, superior to the state-of-the-art PCCs. Inspired by the synergetic effects of vertically-aligned RGNPs inside PCCs with directional thermal/electrical transports, the versatile PCC-based energy devices set up new records for sunlight-driven direct photo-thermal energy harvesting & storage at high-temperature heats (>186 °C) without optical concentration, and ultralow voltage-driven (< 0.34 V) fast electro-thermal energy conversion & storage with high efficiency (~ 92.7%). Our work provides a cost-effective route to fabricate scalable highly conductive PCCs and synergetic strategy to realize efficient PCM-based energy management for solar-thermal utilization and other heat-related processes.



中文翻译:

由垂直排列的网状石墨纳米片实现的高导电相变复合材料,用于高温太阳能光/电热能转换、收集和存储

相变材料 (PCM) 的热能收集和储存在太阳能热利用和能源管理中发挥着广泛而关键的作用。然而,PCMs固有的低热导率和缓慢的热传输是加速基于PCM的热能收集和存储的巨大挑战。在此,我们报告了一种协同策略,用于合成可扩展的高导电相变复合材料 (PCC) 并通过在 PCC 内部对齐自组装大尺寸网状石墨纳米片 (RGNP) 来定制热传输。垂直排列和分层的大尺寸 RGNPs 使 PCCs 的定向热导率和电导率分别达到 33.5 W/mK 和 323 S/cm,RGNPs 负载低于 25 wt%,优于最先进的 PCC . 受 PCC 内垂直排列的 RGNP 与定向热/电传输协同效应的启发,基于 PCC 的多功能能源设备为高温加热(>186 °C) 没有光学浓度,超低电压驱动 (< 0.34 V) 快速电热能量转换和存储,效率高 (~ 92.7%)。我们的工作提供了一种具有成本效益的途径来制造可扩展的高导电 PCC 和协同策略,以实现基于 PCM 的高效能源管理,用于太阳能热利用和其他与热相关的过程。基于 PCC 的多功能能源设备在高温加热 (> 186 °C) 下无光学聚集和超低电压驱动 (< 0.34 V) 快速电热条件下,为太阳光驱动的直接光热能量收集和存储创造了新记录- 高效率的热能转换和储存(~ 92.7%)。我们的工作提供了一种具有成本效益的途径来制造可扩展的高导电 PCC 和协同策略,以实现基于 PCM 的高效能源管理,用于太阳能热利用和其他与热相关的过程。基于 PCC 的多功能能源设备在高温加热 (> 186 °C) 下无光学聚集和超低电压驱动 (< 0.34 V) 快速电热条件下,为太阳光驱动的直接光热能量收集和存储创造了新记录- 高效率的热能转换和储存(~ 92.7%)。我们的工作提供了一种具有成本效益的途径来制造可扩展的高导电 PCC 和协同策略,以实现基于 PCM 的高效能源管理,用于太阳能热利用和其他与热相关的过程。

更新日期:2021-07-18
down
wechat
bug